
NASA / CRm1999-209402

Inwestigation of Near Shannon Limit

Coding Schemes

S.C. Kwatra, J. Kim, and Fan Mo

The University of Toledo, Toledo, Ohio

DTVI-59

September 1999

The NASA STI Program Office... in Profile

Since its founding, NASA has been dedicated to

the advancement of aeronautics and space
science. The NASA Scientific and Technical

Information (STI) Program Office plays a key part

in helping NASA maintain this important role.

The NASA STI Program Office is operated by

Langley Research Center, the Lead Center for
NASA's scientific and technical information. The

NASA STI Program Office provides access to the

NASA STI Database, the largest collection of
aeronautical and space science STI in the world.

The Program Office is also NASA's institutional
mechanism for disseminating the results of its

research and development activities. These results
are published by NASA in the NASA STI Report

Series, which includes the following report types:

TECHNICAL PUBLICATION. Reports of
completed research or a major significant

phase of research that present the results of
NASA programs and include extensive data

or theoretical analysis. Includes compilations
of significant scientific and technical data and
information deemed to be of continuing

reference value. NASA's counterpart of peer-
reviewed formal professional papers but

has less stringent limitations on manuscript
length and extent of graphic presentations.

TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or
of specialized interest, e.g., quick release

reports, working papers, and bibliographies
that contain minimal annotation. Does not

contain extensive analysis.

CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored
contractors and grantees.

CONFERENCE PUBLICATION. Collected

papers from scientific and technical

conferences, symposia, seminars, or other

meetings sponsored or cosponsored by
NASA.

SPECIAL PUBLICATION. Scientific,
technical, or historical information from

NASA programs, projects, and missions,

often concerned with subjects having
substantial public interest.

TECHNICAL TRANSLATION. English-
language translations of foreign scientific

and technical material pertinent to NASA's
mission.

Specialized services that complement the STI

Program Office's diverse offerings include
creating custom thesauri, building customized

data bases, organizing and publishing research
results.., even providing videos.

For more information about the NASA STI

Program Office, see the following:

• Access the NASA STI Program Home Page
at http://www.sti.nasa.gov

• E-mail your question via the Internet to

help@sti.nasa.gov

• Fax your question to the NASA Access
Help Desk at (301) 621-0134

• Telephone the NASA Access Help Desk at
(301) 621-0390

Write to:

NASA Access Help Desk
NASA Center for AeroSpace Information
7121 Standard Drive

Hanover, MD 21076

NASA / CR--1999 -209402

Investigation of Near Shannon Limit

Coding Schemes

S.C. Kwatra, J. Kim, and Fan Mo

The University of Toledo, Toledo, Ohio

DTVI-59

Prepared under Grant NAG3-1718

National Aeronautics and

Space Administration

Glenn Research Center

September 1999

Trade names or manufacturers' names are used in this report for

identification only. This usage does not constitute an official

endorsement, either expressed or implied, by the National

Aeronautics and Space Administration.

NASA Center for Aerospace Information
7121 Standard Drive

Hanover, MD 21076
Price Code: A05

Available from

National Technical Information Service

5285 Port Royal Road

Springfield, VA 22100
Price Code: A05

TABLE OF CONTENTS

Table of contents

List of tables

List of figures

Chapter 1: Introduction

1.1 Coding

1.2 Block coding and decoding

1.2.1 Definitions of block codes

1.2.2 Block coding

1.2.3 Block decoding

1.2.4 Common block codes

1.2.4.1 Single bit parity-check codes

1.2.4.2 Repeated codes

1.2.4.3 Hamming codes

1.2.4.4 Cyclic codes

1.2.4.5 Other block codes

1.3 Convolutional coding and decoding

1.3.1 Definition of convolutional codes

1.3.1.1 Code tree

1.3.1.2 Trellis

1.3.1.3 State diagram

1.3.2 Convolutional encoding

1.3.3 Convolutional decoding

1.3.3.1 Maximum likelihood decoding of

convolutional codes

1.3.3.2 Sequential decoding of convolutional codes

Chapter 2: Turbo codes

2.1 Concepts of turbo codes

m

vi

vii

1

2

3

3

3

4

5

5

6

6

6

7

7

7

8

9

10

10

11

11

12

13

14

iii

2.1.1 Turbo encoding system

2.1.1.1 Recursive systematic convolutional codes

(RSCC)

2.1.1.2 Interleaver

2.1.1.3 Puncturing pattern

2.1.2 Turbo decoding system

2.1.2.1 General turbo decoding scheme

2.1.2.2 MAP algorithm

2.2 Performance of turbo codes

2.3 Output weight distribution and performance bounds for turbo

codes

2.3.1 Output weight distribution

2.3.2 Performance bounds

2.4 Relation between the system parameters and output weight

distribution

2.4.1 Generator polynomial

2.4.2 Interleaver

2.4.3 Puncturing pattern

Chapter 3: lterative decoding of block codes

3.1 Construction of trellis for block codes

3.1.1 Characteristics of the trellis constructed from block

codes

3.1.2 The method of construction

3.2 Iterative log-likelihood decoding of binary block codes

3.2.1 Log-likelihood algebra

3.2.2 Soft-in/soft-out decoder

3.2.3 Iterative decoding algorithm

3.2.4 Optimal and sub-optimal algorithm

3.3 Implementation of the algorithm

3.3.1 Straight-forward implementation

3.3.2 Dual code implementation

14

15

16

16

19

19

20

28

32

32

34

36

37

41

44

51

51

51

54

55

55

56

57

58

60

60

61

IV

3.3.3A decodingexampleby using straight-forward

implementation

3.3.3.1 Constructing trellis for information bits

3.3.3.2 The decoding system

3.3.3.3 The calculation of extrinsic value from

constructed trellis

3.3.3.4 Simulation result

62

63

65

66

69

References 70

V

Table 2.1

Table 2.2

Table 2.3

Table 2.4

Table 2.5

Table 2.6

Table 2.'7

Table 2.8

LIST OF TABLES

Performance of high rate turbo codes

Factors for the performance of turbo codes

Performance of 4/5 turbo codes with different size interleavers

Floor flaring effect for different interleaver sizes

Puncturing patterns selected for different code rates

Selected bit locations after puncturing for 2/3 rate

Selected bit locations after puncturing for 5/6 rate

The locations selected by selecting different bits

in each 10 parity bits for 5/6 rate

30

31

43

44

45

48

48

5O

vI

LIST OF FIGURES

Fig 1.1

Fig 1.2

Fig 1.3

Fig 1.4

Fig 1.5.

Fig 2.1

Fig 2.2

Fig 2.3

Fig 2.4

Fig 2.5

Fig 2.6

Fig 2.7

Fig 2.8

Fig 2.9

Fig 2.10

Fig 2.11

Fig 2.12

Fig 2.13

Fig 2.14

Fig 2.15

Fig 2.16

Fig 2.17

Fig 2.18

Transmission with coding

An example of a typical convolutional encoder

The structure of code tree

A part of trellis between depth k and depth k+l

The structure of state diagram

General encoding scheme of turbo codes

Punctured 23_31 RSCC 1 with rate 4/5

Punctured 23_31 RSCC2 with rate 4/5

General decoding scheme of turbo codes

(5,7) RSCC

The state diagram of the (5,7) RSCC

Trellis diagram of (5, 7) RSCC

Soft-decoding bounds at different code rates

The performance of turbo codes at different code rates

The performance of turbo codes compared to some

convolutional and block turbo codes, also the Shannon limit

An example of turbo encoder with M=2 and feedback

polynomial I+D +D 2

Recursive encoder with generator polynomial (23,31)

Comparison of the (23, 31) and (31, 27) generator polynomials

The influence of interleaver size on the performance of turbo

codes

Comparisons of different puncturing patterns for high rates

at certain Eb/No

The performance of 5/6 code with different interleaver sizes

The improvement of the performance with the modified

puncturing pattern at different interleaver sizes

The improvement of the performance with the modified

puncturing pattern at code rates 5/6, 10/11, 15/16

2

7

8

9

10

15

18

19

19

24

24

25

29

30

31

38

41

41

43

46

47

49

50

vii

Fig 3.1

Fig 3.2

Fig 3.3

Fig 3.4

Fig 3.5

Fig 3.6

Fig 3.7

Fig 3.8

Fig 3.9

Thetrellis constructedfor a (7,4)Hamming code

before expurgation

Expurgated trellis for (7,4) Hamming code

Soft-in / soft-out decoder

Iterative decoding procedure with soft-in / soft-out decoders

Full trellis for first information bit location

The final trellis with two ending states for first

information bit location

The final trellis with two ending states for information

bit location 2

The decoding system of (7,4) Hamming code while

working on information bit 1

The decoding system of the (7,4) Hamming code

while working on information bit 2

53

54

56

57

63

64

64

65

66

viii

CHAPTER 1

INTRODUCTION

Turbo codes, representing the most important breakthrough in coding, are able to

operate near Shannon limit. Extensive research results are being reported about this novel

technique. The commonly accepted turbo coding is implemented by a system, which

consists of two parallel concatenated re,cursive systematic convolutional encoders

separated by an interleaver [1]. The maximum a posteriori probability (MAP) algorithm

is applied for decoding because of its improved performance [2]. Since low-rate codes are

not appropriate for commonly used applications, there is a need to develop high rate

turbo codes [3]. It has been shown that some high rate codes have very good performance

but others exhibit poor performance. It is claimed that selection of puncturing patterns

has considerable influence on the performance [3]. In this report, performance of high

rate turbo codes is analyzed based on the simulation results. For high rates with normal

performance, different puncturing patterns have been selected in the simulations and their

performance is compared. For special high rate codes with poor performance, an

alternative puncturing algorithm is developed which shows significant improvement in

the performance.

Iterative decoding of block codes has gained more and more interest recently.

Log- likelihood algorithm is used in the decoding and the "symbol by symbol" MAP

decoding is the optimal method [4]. The construction of trellis for block codes is the first

and a key step in the decoding [5]. By the constructed trellis for each information bit, an

extrinsic value can be calculated by using MAP algorithm, which is then used as the a

priori value of the next iteration. The procedures for trellis construction, extrinsic value

calculation, and iterative algorithm will be discussed in detail in this report.

Before the discussion of turbo codes and iterative block decoding, a review of

coding, block codes and convolutional codes is given in this chapter. Turbo convolutional

codes are discussed in Chapter 2 and iterative block decoding is introduced in Chapter 3.

1.1Coding

A cost-effectivesystem transmits information at a rate and a level of reliability

that are acceptable. Two parameters are important in the design of a digital

communication system. One parameter is the signal energy per bit to noise power spectral

density ratio, Do/No. The second parameter is the bandwidth. Practical considerations

place a limit on the value of available Do/N0; it's followed that under some conditions it is

impossible to provide acceptable quality because of inadequate Do/No.

Channel coding is used to provide for the reliable transmission of the digital

information over the channel. For a fixed value of EjN0, coding is a good and practical

way to improve the data quality. For fixed error rate, with the help of coding, we can

decrease the requirement of the _0, which will in turn decrease the required

transmitted power.

Coding introduces the redundancy into the message based on a prescribed rule to

: detect the error and to correct the error. Transmission process with coding is shown in Fig

1.1. Channel encoder accepts message bits and adds redundancy according to the coding

rule. Channel decoder exploits the redundancy to decide which message bit was

transmitted.

The error, effect of the channel impairment, is minimized by coding. However,

not all of the errors can be detected and corrected by coding. The correction capacity

depends on the similarity between the acceptable and the unacceptable code words. Block

coding and convolutional coding are the two most important and widely used methods in

coding.

I
!
1

I Inform_on _ Encode _ Modulatesou_-_Q

°'°°"

Fig 1.1 Transmission with coding

2

1.2 Block coding and decoding

1.2.1 Definition of block codes

Codes formed by taking a block of k information bits and the added m redundant

bits to form a code word of n = k + m bits are called block codes. These can be

represented as (n, k) codes. The n-bit codeword consisting of k information bits and m

redundant bits is called systematic code. The code where k information bits are not

explicitly present in the codeword is called nonsystematic code.

The k information bits represent the 2 k equally likely messages. The total

number of possible n-bit codewords is 2 n . There are 2 _ -2 k n-bit codewords that do not

represent possible messages.

If we want to maintain the rate of information transmission, the transmitting rate

should increase after the coding by Rc/Rt, = n /k, where Re,, Rb are the coded and

uncoded bit rates respectively.

1.2.2 Block coding

Assume that the uncoded word is u= [ul u2 u3 uk]. The generation of a block

code starts with a selection of the number m of parity bits to be added. Specify an H

matrix,

hal ha2 --" /hk 1 0 0
H= h21 h22 ... h2k 0 1 0

..................[hM2 ... h_ 0 0 0

... 0]°°" i

°°°

(1.i)

mxk m×m

which is made up of an mx k sub-matrix h and an m x m identity submatrix. Each h 0 in

the matrix is either 1 or 0. Assume the coded words as v= [ul u2 ... uj, p: P2... P,,t], where

v and H should satisfy the equation,

Hv _ = 0 (1.2)

To generate a code word v from u, we form a generator matrix G.

i" o o ... o _, h21-'-h., I

1 0 ..-0 h12 _ "" h.,J_" • .o, oe, .o. .o, o,, ooo ,o, ,..

o o ... 1 h,, hl, .-. h_l

(1.3)

kxk kxm

G consists of an identity submatrix of dimension k x k, and a second sub-matrix, which is

the transpose of h (one of the sub-matrics of H). The codeword v corresponding to each

uncoded word u is

v =uG

For each u generated, equation (1.2) should be satisfied.

(1.4)

]

i
I

!

3

1.2.3 Block decoding

Decoding the received codewords can be done by evaluating the correlation of the

received word with all possible words, and the one that exhibits the closest correlation is

determined as the transmitted codeword. This method is not efficient for codewords of

large length. Block coding provides an alternate way to reduce the complexity, of

decoding.

Name the received message as r. It may or may not be the same as the transmitted

codeword v. We can determine if r is equal to v by using the equation,

Hr " = 0 (1.5)

If equation (1.5) can not be satisfied, that means there are at least one or even more bits in

error. If the equation can be satisfied, we can not absolutely be certain that r is correct

and equal to v, because there's the possibility that several errors occurred in the

transmission and they happened to change the transmitted codeword into another possible

codeword. When r _ v, we assume

r=- v + e (1.6)

where e is the error pattern. Thus we will also have

r T =v _ +e _ (1.7)

The appearance of a 1 in the error pattern • indicates an error in the corresponding bit

position and 0 indicates no error has been made.

We can begin the decodingfrom the evaluation of syndrome s of the received

codeword r. Since Hv _ equals 0,

s = Hr" = H(v f +e f) = Hv r +He" = He r (1.8)

If s is not equal to zero, that means there are one or more errors, s equals to zero means

either there is no error or the error pattern is equal to a valid codeword. If s is not zero,

we earl calculate s by the equation

s= Hr _ (1.9)

For single error case, we can compare s with each column of H. If the ith column of H is

identical to s, then the ith bit of the codeword is in error. For more than one error case, we

must solve (1.8) and identify the error patterns. The error pattern with fewest errors

should be selected.

The number of the possible error patterns is 2 k . Thus the number of error

patterns will be very large with the increase of k. However, there are a maximum number

of errors that a code can correct, thus we can ignore the possibility of errors larger than

that number since we can not correct them.

1.2.4 Common block codes

1.2.4.1 Single parity-check bit codes

Single parity-check bit coding is the simplest method in block codes. The theory

of this method is as follows:

1) Adding a redundant bit Pl at the end of the information bits, so

n-k+m =k+l (1.10)

2) If the information bits have odd number of 1 's, or equivalently, the addition of the

information bits equals to 1, pl is set to be 1.

3) Otherwise, pt is set to be 0.

This method keeps an even number of l's in the transmitted message. If the

received message shows odd number of l's, then error must have occurred in the

transmission. This method works well only under the condition that the probability of

more than 1 errors to occur in a codeword is quite low. Another shortcoming of this

method is that it can only detect the error but can not detect which bit is in error. It

follows that this method can not be used to correct the error.

5

1.2.4.2 Simple repetition codes

This method repeats a binary bit 2t+l times. Since k= land m = 2t,

n f k +m = l + 2t (1.11)

Repeated code with length 2t +] can correct as much as t errors. But it will need

significant bandwidth because the rate is changed to 1/(2t+1). Therefore such codes are

inefficient.

]

1.2.4.3 Hamming codes

Assume d as the distance between each pair of codewords. Hamming distance

(d_) is defined as the minimum value of d. The greatest likelihood of confusion between

words will be encountered for a codeword pair where d is the minimum. So the Hamming

distance establishes the upper limit of the effectiveness of a code.

In Hamming code, we have

Block length n = 2-" -1 (1.12)

Number of message bits k = 2" -1-m (1.13)

Number of parity bits n - k = m (1.14)

where m _>3. If d,,a,_ = 2t + 1, then the errors smaller than t bits can be corrected. In a

(7,4) Hamming code (m =3), the smallest Hamming weight for nonzero codewords is 3,

so d,,_ = 3 and t = 1, it follows that single error can be corrected.

The parity check matrix H has m rows and n columns. Each column is unique and

no column consists of all zeros. To form systematic code, all the columns are arranged to

separate submatrix h and the identity submatrix I.

1.2.4.4 Cycfic codes

Cyclic codes form a subclass of linear block codes and they have the advantage

that they are easily encoded and decoded. Indeed, many of the important linear block

codes are either cyclic codes or closely related to cyclic codes. Cyclic codes have two

fundamental properties:

1) Linear property: The sum of two code words is also a eodeword.

2) Cyclic property: Cyclic shift of codewords forms other valid codewords. Codewords

can be written in a cycle. There are 2* -1 starting points to read the code, each

related to the other with a shift.

Hamming code is an example of the cyclic code. Assume a (7, 4) Hamming code.

The number of information bits k = 4. It follows that there are a total of 16 codewords for

the Hamming code. Two groups of seven of them are precisely the cyclic-shift related

words. The last two codewords, other than these fourteen, arc 0000000 and 1111111. For

these two codes, any cyclic shift forms the same codeword.

1.2.4.5 Other block codes

Some other types of block codes include Hadamard code, extended code, Golay

code, and BCH code.

1.3 Convolutional coding and decoding

1.3.1 Definition of convolutional codes

In block coding, the encoder generates n- bit codeword from a k-bit message. The

code words are produced on block-by-block basis. So there must be a buffer to store the

message before the encoding is done. In convolutional coding, the use of buffer is not

needed. A convolutional encoder operates on the incoming message sequence

continuously in a serial manner. An example of a typical convolutional encoder is shown

in Fig 1.2, in which we see that a convolutional code is generated by combining the

outputs of an M-stage shift register with the employment of N,t binary adders.

Input Sequence

wilh length L _ M-stage shhl regisler

NA modulo-2

adders

Codeword sequence

_th Is ngth I_O..-H_ _

Fig 1.2 An example of a typical convolutional encoder

As shown in Fig 1.2, we assume that the length of the message is L and the

system consists of an M-stage shift register and NA modulo-2 adders, the code rate will be

L
r= (1.15)

N,4 (L + M)

Normally, L is much larger than M, so the code rate can be simplified as 1/NA.

Constraint length is defined as the number of shifts over which message bit can

influence the encoder output. The constraint length K equals M +1 in convolutional

coding. The structural properties of a convolutional encoder are portrayed in graphical

form by using three equivalent diagrams: code tree, code trellis, and state transition

diagram.

1.3.1.1 Code tree

Fig 1.3 shows the first several stages of a code tree. Each branch of a tree

represents an input symbol. Normally, input 0 specifies the upper branch in a tree, input 1

specifies the lower branch. A specific path in the tree is traced from left to right in

accordance with the input sequence. The corresponding coded symbols on the branches

of that path constitute the sequence supplied by the encoder to the discrete channel input.

The tree becomes repetitive after k branches. The nodes become identical because the

first bit has been shifted out of the register.

/I

I°

11

11

10

O!

OO

11

10

O1

11

O!

10

11

10

I o,
11

01

IQ

[11
.°

Ol

I ,o

Fig 1.3 The structure of code tree

1.3.1.2 Cede Trellis

The code trcc can be transformed into a new form, called trellis. Trellis is a tree-

like structure with rcmerged branches.

As in a tree, each input sequence corresponds to a specific path through the trellis.

However, a trellis is more instructive than a tree in that it brings out explicitly the fact

that the associated convolutional encoder is a finite-state machine.

State is defined as the most recent M message bits shifted into the encoder

register. The state of this encoder can assume any one of the 2x-I possible values. The

trellis contains L + K levels which are called as depth of the trellis. Trellis is preferred

than tree because the number of nodes at any level of the trellis doesn't continue to grow

as the number of incoming message bits increases. Fig 1.4 shows part of a trellis between

depth i and depth i+1. The solid lines represent inputs of 0, and the dashed lines represent

inputs of 1.

s2-o//- \ \ s2

\

\
O1 \01

53__ 10 -_C)S3

Fig 1.4 A part of trellis between depth i and depth i+l

9

1.3.1.3 State transition diagram

Though it looks very simple, the input- output relation of a convolutional encoder

is completely described by its state diagram.

Yr'' ,
J

03

$!

$2

}
1
I

Fig 1.5. The structure of state diagram

The nodes of the state diagram represent the possible states of the encoder. Each

node has 2 M-_ incoming branches and 2 u-I outgoing branches. The label on each of

the branches represents the encoder's output as it moves from one state to another.

1.3.2 Convolutional encoding

The operation of the encoder (Fig 1.2) proceeds as follows:

1) Assume the shift register is initialized.

2) The first bit of input data enters in the first register Ml.

3) During the message bit interval, the adder calculates NA outputs.

4) The next message bit moves to Ml, and the first bit transfers from M_ to M2, and

again, all NA adder outputs are calculated.

5) This process continues until last bit of the message comes in M1.

6) Enough 0's are added to the end of the message sequence, to allow the whole

encoding process to be completed as the last bit leaves the last register.

7) The shift registers are in the original clear condition again.

10

1.3.3 Convolutional decoding

1.3.3.1 Maximum likelihood decoding of convolutional codes

Viterbi algorithm for the decoding of convolutional codes is developed. In the

development process, first, for the binary symmetric channel (BSC), the maximum-

likelihood decoder reduces to a minimum (Hamming) distance decoder. Second, the

trellis representation is used to establish the basic concepts of the Viterbi algorithm.

Assume v as the input code vector of the channel, and r denotes the corresponding

received vector. Vector r may differ from vector v if error occurs due to the channel

noise. However, from the received r, we can estimate v. The decoding rule for choosing

the estimate of v, given the received vector r, is said to be optimum when the probability

of decoding error is minimized. So the maximum-likelihood decoding rule for the binary

symmetric channel is as follows: Choose the estimate x that minimizes the Hamming

distance between r and v. Thus for the binary symmetric channel, the maximum-

likelihood decoder reduces to a minimum distance decoder.

Thus we may decode a convolutional code by choosing a path in the code tree

whose coded sequence differs from the received sequence in the fewest number of places.

We may equally limit our choice to the possible paths in the trellis representation of the

codes.

Viterbialgorithm makes sequence of decisionswhen working through the trellis.

The algorithmoperatesby computing a "metric" forevery possiblepath in the trellis.The

metricsof the 2x-_ possiblepaths enteringthe node arc compared and the one with the

lower metric isretained.The paths thatare retainedarc calledsurvivors.No more than

2x-_ survivorpaths and theirmetrics willcvcr be stored.The relativelysmall listof

pathsisalways guaranteed tocontainthemaximum- likelihoodchoice.

The stepscan be describedas:

I) Startingatleveli = M, compute the metricfor the singlepath enteringeach stateof

the encodcr. Storethe survivorand itsmetricforeach state.

2) Increment the leveliby I.Compute the metricfor allthe paths enteringeach stateby

adding the metric of the incoming branches to the metric of the connecting survivor

from the previous time unit. For each state,identifythe path with the lowest metric

as the survivor of step 2. Store the survivor and its metric.

11

3) If level i < L +M, repeat step 2, otherwise, stop.

Viterbi algorithm is a maximum-likelihood decoder, which is optimal for a white

noise Gaussian channel.

1.3.3.2 Sequential decoding of convolutional codes

This method is sub-optimal but can avoid the computation of the likelihood, or

metric, of every path in the trellis, thereby reducing computational complexity and

allowing the constraint length K to take on very large values. Although sequential

decoding algorithms are not as good as maximum likelihood decoding algorithms, they

are computationally effcient for large K.

Sequential decoding is an intuitive trial-and-error technique for searching out the

correct path in a code tree. During the course of this search, the decoder moves forward

and backward in the code tree, one node at a time. The decision to move forward or

backward is determined by the manner in which the metric of the algorithm varies along

the path followed by the decoder.

Several algorithms have been devised for the sequential decoding of

convolutional codes. Fano algorithm is probably the most important because it has the

useful feature that it uses very little storage. In Fano algorithm, the decoder moves

forward and backward, the decision is made by comparing the path's Fano metric at the

node with a running threshold maintained by the decoder.

In addition to the computer requirements for executing the Fano algorithm, the

decoder contains a buffer to store the received sequence, and a replica of the encoder.

1

"i

12

J

CHAPTER 2

TURBO CODES

There exists a limiting value of Eb/No below which error-free communication is

impossible at any information rate. This value of EJNo is called as Shannon limit. It's not

possible in practice to reach Shannon limit, because it will cause the bandwidth

requirement and implementation complexity to increase without bound. Shannon's work

provided a theoretical proof for the existence of codes that can improve the BER

performance, or reduce the E_qVo required. Our aim in coding and decoding is to get as

close to the Shannon limit as possible.

Low BER in high noise environment requires the very complex channel coding

and decoding schemes. According to Shannon's theorem, performance of long random

codes can approach Shannon's limit. However, long random codes are extremely difficult

to decode generally.

Turbo coding, defined as the process of using parallel concatenation in

conjunction with recursive systematic convolutional codes (RSCC), can produce codes

with performance close to the Shannon limit. As mentioned above, Shannon limit can be

reached when decoding large random codes; so in addition to a large minimum distance,

good codes should have a distance distribution that mimics that of random coding. Turbo

codes can be designed to generate a weight distribution similar to that of random codes. It

requires encoding the information as well as the interleaved version of the information

through a pseudo-random interleaver. The input is presented as blocks of bits.

Turbo coding is regarded as an important new technology developed in recent

years because it leads the error control coding techniques finally to get very close to the

Shannon limit. The performance of turbo codes is much better than all other ever

designed block or convolutional coding techniques. Turbo codes are so efficient because

they combine several codes by concatenation, maximize the use of channel information,

13

and have random like distribution of codewords. This approach has the significant error

correcting capacity even at very low E_Vo.

Though turbo coding is a newly invented error correcting technique, a large

number of research papers have been published. Turbo coding techniques have

progressed very rapidly and we can expect several commercial applications in the near

future. Most of the research work has been on finding the exact explanation of the

extraordinary performance of turbo codes and providing methods to obtain an even

further improvement on the performance of turbo codes. In earlier research work, the

outstanding performance of turbo codes was shown by computer simulations, and some

theoretical explanations for the simulation results were discussed [1][13][17]. Then, some

important components and parameters of the coding system became the main

concentration. Researchers analyzed the theory about generator polynomial [20],

intefleaver [22][23], puncturing pattern [3][24] and the decoding algorithm [14][15], and

tried to modify them to achieve even better performance. At the same time, factors such

as system complexity, execution time, and cost were considered. In the most recent two

or three years, output weight distribution has been found to decide the performance of

turbo codes [25]. One area of investigation is the influence of the factors such as

interleaver and generator polynomial on the output weight of the turbo codes. It is of

interest to determine a way to achieve the best estimation of the output weight

distribution when all the system parameters have been decided. An accurate estimation

will be very helpful for the evaluation of the performance of the system.

-]

i
J
J

2.1 Concept of turbo codes

2.1.1 Turbo encoding system

Turbo codes are encoded by concatenating two RSCC's using an interleaver.

When a block of message bits is input to the system, they are encoded directly with one

of the two RSCC's, called RSCC1. The same block of message bits are interleaved by a

pseudo-random intefleaver before encoding with another RSCC, called RSCC2. After

the parity sequences are generated by RSCC's, they are punctured by puncturerl and

puncturer2 to increase the code rate. General encoding scheme of turbo codes is shown in

14

Fig 2.1.

Ig

hi,
v

_ Puncturerl _-_

RSCC2
_ Puncturer2 _-_

Fig 2.1 General encoding scheme of turbo codes

2.1.1.1 Reeursive systematic convolution codes (RSCC)

RSCC's are constructed from NSCC's (Non-systematic Convolution Codes) by

using a feed back loop. They perform better than the best NSCC's at any SNR, especially

for high code rate. RSCC's generator is called as a_b RSCC. 'a' and 'b' represent octal

numbers that are converted to binary to represent the connections in a generator circuit

where a is called as FB(feedback) connection and b as FF(feed-forward) connection.

Assume the generator matrix of a nonrecursive convolutional code has the form

Gt_R(D)=[gt(D) g2(D)], (2.1)

the equivalent generator matrix of the recursive systematic encoder is

GR(D)=[1 g2(D)] (2.2

where gj(D) and ga(D), respectively, represent the feedback and feedforward connections

of the RSC encoder. The impulse response of a well designed memory M RSCC will

repeat itself after 2 M-t bits [2].

15

2.1.1.2 Interleaver

To achieve the best possible performance of turbo codes, using a good interleaver

is the most important factor. Most of the input sequences, after going through the

RSCC's, have a random-like output weight distribution. However, there exist some input

sequences which cause low output weights. These low weight codewords cause the codes

to perform poorly. The use of interleaver in the encoding of turbo codes is helpful to

reduce the number of low output weight codewords generated by the single RSCC. When

some of the input words produce low weight output codewords through RSCC1, the

interleaver makes most of them to produce higher weight codewords through RSCC2.

The interleaver permutes the information bits in an alternative order to make the

output of RSCC2 (/)2) appear to be independent of the information sequence (u) and

therefore random-like, but at the same time, still have a structure that permits decoding.

Random interleaver is preferred. Size of L=A_ memory is used where the bits to be

interleaved are stored. These bits are always read in through the rows of the memory,

then read out by using pseudo-random algorithm to implement interleaving. The

correlations between these bits are changed in the process.

The randomness of an interleaver in a turbo-code scheme can be tested by using

computer simulations. Deinterleaving, the inverse function of interleaving, is

implemented after the decoding.

I

"i

)

2.1.1.3 Puncturing pattern

Turbo coding is an important new technology that allows the operation of coded

modulation schemes near channel capacity on power-limited channels. So, it can be used

to offer near-capacity performance for deep space and satellite channels. However, it is

desirable that the performance of turbo-coding schemes be also available for bandlimited

channels. Trellis-coded M-PSK schemes have been proposed for bandwidth-efficient

modulation and coding, but the carrier recovery faces the problem that the receiver is

forced to operate below the recovery loop's threshold. High rate turbo codes, which are

both power and bandwidth efficient, may be the solution to this problem.

Puncturing method is used to achieve higher rate codes. Assume that the original

code has a rate of Ro. It means that for transmitting each information bit, 1/Ro bits are

16

transmitted through the channel. Also assuming the puncturing period is Np and in each

period the puncturing pattern is similar, we can construct a puncture matrix with

dimension (1/Ro) xNp, with the elements in the matrix either 1 or 0. 1 represents that the

corresponding bit is retained and 0 represents that the bit is punctured.

An example to show how to achieve high rate is as follows. Let Ro = 1/2, we

puncture the code with a period 4 and the 2 x 4 puncture matrix is defined as,

:]0 1 (2.3)

The rate of the original codes is 1/2 because for every 4 information bits, 8 bits are sent

through the channel. After the puncturing, the rate of the code is changed into 4/5,

because now, only five bits are sent for the 4 information bits.

High rate turbo codes are obtained when we use the concept of puncturing on

turbo codes. In turbo coding, the input data go to the RSCC1 directly and go to the

RSCC2 after interleaving. RSCC1 and RSCC2 can be identical or not. The systematic

information bit ui is transmitted directly. RSCC1 and RSCC2 will produce the parity bits,

denoted as p, and P2i as shown in Fig 2.1. The rate for the RSCC 1 and RSCC2 are both

1/2 when k parity bits are added to the k information bits and transmitted for each of

them. In this case, for the whole system, 2k parity bits are transmitted through the channel

together with the k information bits, so the rate for the system is 1/3. Any code rate

higher than 1/3 for turbo codes is called high rate. The code rate of the system can be

calculated from the code rates of the 2 RSCC's from the following equation,

1 1 1
_ = m +___ 1 (2.4)
R R I R 2

R, and R2 can be different, but they should satisfy RI_<Rz for best decoding performance

[3].

For turbo codes, in order to obtain good results from iterative decoding, only the

parity bits can be punctured. Thus, after puncturing, the range of the code rates of each

RSC encoder is between Ro and Np/Np+l. The rate Np/Np+l appears when only one bit

in each puncturing period is retained. Generally, high rate codes with a rate

R= Np/ Np+ l, 2 _<Np _<16 (2.5)

17

are considered for constituent encoders with memory size M = 4. They will achieve code

rates from 0.67 to 0.94. Similar rates are always selected for two RSCC's, thus we have

RI= Rz From (2.6), we can determine that only when

2Np
Ri = R2 = , (2.6)

2Np + 1

R will have the value Np /Np+l. It follows that for each 2Np information bits, only 2

parity bits, each from one of the two RSC encodcrs, will be transmitted after puncturing.

Thus there arc (2Np) 2 possible puncturing patterns to be considered in total.

Here we give an example to show how to achieve a high rate turbo code with rate

of 4/5. Each of the two RSC encoders should have a rate of 8/9. Thus, we have Ro = 1/2,

Np = 4, 2Np = 8. The following 2 puncturing matrics (2 x 8) are applied. PA is for the

RSCC 1 and PB is for RSCC2.

[:l,ll,, ;1PA= oooooo

Pa= 0 0 0 0 1 O,

(2.7)

(2.8)

Notation P (cj, c2) can be used to indicate the puncturing pattern of turbo codes. If

the Cjth bit in each period of 2Np parity bits is saved for the RSCC1, and the c2th bit is

saved for RSCC2, it is described as P(cl, cz). So in our example, we have P(1, 6). Figures

2.2 and 2.3 show the punctured turbo codes achieved according to the puncturing matrics

(2.7) and (2.8). Generator matrics used here are both 23_31 for the two encoders.

l
1

Ul U2 U3, /,_4, U5 /,/6, 1,17 i/,$

_ 10000000

ptlO000000 P19000000

Fig 2.2

Pn Pn Pt3, Pt_ Pt5 Pt6, Pt7 Pt_ Pt9

Punctured 23_31 RSCC1 with rate 4/5

ui

18

Ul 1/2 U.t, U4, gtj_ U7 UB......

11111111 I"

U i U2 Uj, U4, U$ U& U7 Ua

4_00000100 14

O0000p_O000000 p2u, O0 Ptl Pt2 P13, Pt,t Pls P16, Plr Pla, P19

Fig 2.3 Punctured 23_31 RSCC2 with rate 4/5

Ui

2.1.2 Turbo decoding system

2.1.2.1 General turbo decoding scheme

The decoding system of turbo codes is much more complicated as compared to

the decoding system for convolutional codes. The general scheme for turbo decoding is

shown in Fig 2.4.

I
x

Yl

Y2

 rDECl
Vl

Deinterleaver

A
r- Interleaver

_DEC2 _ Deinterleaver I

Fig 2.4 General decoding scheme of turbo codes

The system has two decoders. The first soft output decoder is used with the inputs

being the systematic information and the output of the RSCC1 (noise added). The output

of this decoder is an estimate of the information sequence and is called as reliability value

A. The input of the second soft output decoder is the interleaved new estimate A together

with the parity bits form the RSCC2. The second DEC produces a new estimate of the

interleaved information bits.

, The performance of the system can be improved by iteration, or we say adding a

feedback path from the output of the second decoder to the input of the first decoder.

Thus the first decoder can use all the information available instead of only using the

19

systematic information and the output from the first RSCC. The feedback information

should be independent of the information generated by DEC1, otherwise it will cause

positive feedback and the decoding could be unstable.

2.1.2.2 MAP algorithm

Soft output decoding is applied for turbo codes to improve the performance since all

the information from the channel can be used without any loss by this method. Several

algorithms are used to implement soft decision. Among them, MAP algorithm

(Maximum a Posteriori Probability Algorithm) is the optimal one for decoding. The other

algorithms also widely used include Max-log MAP (a simplification of MAP algorithm),

and SOVA (Soft Output Viterbi Algorithm).

MAP algorithm gives both the decision for every bit and the reliability value for

the bit. This optimal method can minin_e the probability of bit error. A value defined as

A(u i) = In P(ui = 1)
P(u i = 0) (2.9)

is used to determine a soft output value, where P denotes the probability of u_equal to 1

or 0, the sign of A(ui) determines whether the bit is a 0 or 1 while the magnitude

determines the reliability of the decoded bit. Natural log base is always used. For

derivation of the MAP algorithm, we use the notations below,

rij _: received sequence from states at time il to time i2

r0f: the entire received sequence (corrupted by noise)

r_ : the received information at time unit i, R_ = (x,, yi)

x_ : Information bit at time unit i

y_ : parity bit at time unit i

Si : the state of encoder at time unit i

s : value of S_

s': value of S_.1

s & s' = O, 1..... M, -1, where M, is the total number of states

l
]

t

MAP algorithm gives the decision and the reliability value for any bit given that

all bits have been received, so we have

2O

p(u, =a)= (2.10)
(s',s)-.-_ui=a

In this equation, ui is the input information bit at time unit i. The value of ui equals to a

which is either 1 or O. (s', s) _ ui = a means the possible state transition at time unit i

while the input bit is a. Equivalendy, based on Baye's rule we have

,. P{Si_ ! = s ,S i s;ro / }
P{S,_I = s ,S, = sir d} =

p{rd } (2.11)

Define a

Then, we have

f
).

a i (S', S) = P{Si_ 1 = s , S i = $, r0 } (2.12)

a,(s',s)

A(ui) = In (,',)--,u,=t
ai(s',s)

($ ',$)-4 ui=O

(2.13)

In MAP algorithm, the probability of state transition is split into three portions.

a i (s',s) = _/_1 (S') X _ (S',S) X fli (S) (2.14)

where _(s) represents the portion that developed from the received information prior to

the time of the state transition, fl_(s) represents the portion that developed from the

received information after the state transition and ?_(s',s) represents portion based on the

received information at the time of state transition. We have

,. i-I

(_'i_I(S') -- P{Si_l = s ,r 0 }

]3,(s) = P{r, / IS i = s}

/i ($', $) = P{S i =s;r/ISi 1 =s'}

(2.15)

(2.16)

(2.17)

Next we prove Equation (2.14). Based on Markov property, we know that if the state at

time i, S;. is known, events after time i don't depend on ro'.

21

ai_ 1 (s') x _'i (s', s) × Pi (s)

- p{_:= P{Si_ I = $';r 0 }x P{S i = s;_ I $i_ l = 5'}× I S i = $}

i-I = $'" i-I r f [S.
= P{Si_ ! = $'; ro } x P{S i = s; r I Si_ I , ro } x P{ i ,

i f= P{Si_ 1 = s'; S i = $; r0}x P{ IS i = s}

i rf i
= P{Si_ 1 = s';S i = $; r0 }X P{ i I Si_ i = $';S i -" s; r0 }

f

= P{Si_ 1 = s';Si = s;r o }

=$}

= a i (s', s)

Now, to achieve the reliability value, we need to calculate _(s), fli(s) and _(s',s).

_(s) and _(s) can be calculated recursively.

a_ (s) = _ a/_, (s') x _,/(s', s)
$'

' X '/_,_,(s)=Y_.,/_/(s) _'/(s,s)
$

We prove Equations (2.18) here,

a/_, (s') x ?'/(s', s)
$*

=X

--X
$'

P{Si_ 1 = s';rg-'}xP{Si = s;r i IS/_, = s'}

% i-I % ro-IP{Si_ 1 =s,r o }xP{Si =s;r/ISi_ l =s, }

= _ els,_, = r;s/= _;ro'I
$1

= P{Si = s;ro} = ai(s)

_B,(s)xr,(s'.s)
$

= _ P{r/I S i = s} x P{S_ = s; r_ I Si_ , = s'}
$

= ,__ P{r/IS i =s;r,;Si_j =s'}x PIS/= s;r/;Si_, =s'}
, PIS/_! = s'}

=_, PlS/_,= s';s/= s;_I, }
s P{Si_I = $'}

= _ PIS, = s;r_St IS/_, = s'}
$

= elr/_, IS,_, = s'} = fl/_, (s')

(2.18)

22

We add superscript to o_(s', s) and _(s', s) to show the information bit at time i (

0 or 1). Modified equations arc shown below

_ ai I (s', s)

A(u,) = In s. s (2.19)
_ _ a,°(s',s)

$* $

a a

O" i (S', S) = O_i_ 1 (S') >(_i (S', S) X Hi (S) (2.20)

ai(s) =_ _ u,_,(s')× r: (s',s)
a $'

_,_1(s')=2 E _,(s)× rT(s',s)
a $

The only unknown is _,(s',s). We have

aYi (s', s)

= P{S i = s;r ilsi_ 1 = s'}

P{S i = s;r_;S___ = s'}
= ×

P{S__I = s'}

P{S i = $;ri',Si_ I - $,}
= x

P{S i = s;Si_ l = s'}

= P{rilS i = s;Si_ 1

= PxxP
Y

P{S i = s;Si_ 1 = s'}

P{S i = s;Si_ 1 = s'}

P{S_ = s;S___ = s'}

P{S__j = s'}

= s'}xP{S i = slSi_ 1 = s'}

(2.21)

Here Py is a constant since if the Si4 = s' is known, the probability of Si = s has

been decided. Then we only need to obtain Ix. The ri is made up of xi and Yi, where x;

represents the ith information bit and Yi represents the ith parity bit. Assume that signals

go through an AWGN channel with noise variance Nd2 and BPSK modulation is

implemented. Thus we actually transmit 1 for ui= land -1 for ui=O. Thus

xi = (2u_ - 1) + noise

y_ = (2p_ - 1) + noise (2.22)

And,

23

I

Px = P{ri IS i = s;Siq = s'}

-- P{X i I S i -- $;Si_ 1 = s'}xP{y i IS i = s;Siq = s'}

(Xi --Ui) 2 (Yi -- Pl) 2
= exp[-]x exp[]

No No

(2.23)

Thus, r7 (s', s) = const x exp[- (x, - u,)2
No

(Yi - P,)_]
b_ X _xp_

No
(2.24)

Up to now, o_(s), _(s) and 7f(s' ,s) at any time unit i can be achieved. We can get

the reliability value based on them,

,Y_.,r, (Ri. s'. s)./_, (s)- a,_,(s')
* *" (2.25)

A(u,) =/.,n Z Z yo(Ri.,s',s)" fl,(s), cry_,(s')
$ $'

We give an example here to show the steps of calculations. Assume we have a

memory size 2 recursive convolutional encoder as shown in Fig 2.5.

Ui

Ui

Pi

Fig 2.5 (5,7) RSCC

The input - output state diagram of this (5, 7) RSCC is shown in Fig 2.6,

0/0

1/

Fig 2.6

1

' 0/1

1/0

The state diagram of the (5,7) RSCC

24

To implement the MAP algorithm, trellis diagram is more important. Trellis

diagram of the encoder is shown in Fig 2.7

3 1/0

...
2 ©

1 ©

/ 7o o" _
o © -- _0 _0....

Time 0 r_ Time 1 I"2 Time 2 I"3 Time 3

I., .J
1-.. r0 3 q

Fig 2.7 Trellis diagram of (5, 7) RSCC

Assume that ten random bits are generated by the encoder. The information

sequence is [0 0 1 0 0 0 1 0 0 0]. Then the 10 parity bits generated by the encoder are [

0 0 1 I 1 0 0 0 1 1]. After going through the AWGN channel with noise variance 1.6 and

puncturing half of the parity bits to achieve rate 1/2 code (bits deleted by puncturing are

inserted as zeros), the received sequences are as follows.

Information bits xi :

[- 1.04 - 1.14 1.73 - 1.48 -0.02 - 1.49 -0.53 - 1.71 - 1.94

Parity bits Yi :

[-0.70 0 -0.23 0 1.78 0 -0.59 0 1.53

The five main steps in the decoding procedure are as follows:

1. Calculate all 2¢(s',s)

2. Calculate _(s) for all states and times from trds) to oil(s)

3. Calculate fl_.(s) for all states and times from ills) to flo(S)

4. Calculate all o_a(s',s) in one time unit

5. Calculate A(ui)

-2.73]

0]

25

Step 1: Calculation of 71(s', s)

Assume the constant in the equation [2.24] is 1. We show the example for

calculating 7/°(0,0) and _1(0,2) here. We have xl= -1.04, yl= -0.70. For _o(0,0), ul= -

1, p:= -I (Transition noted with 0/0), so

_(0,0)=exp[(-l'04-(-1))2.]xexp[. ('-0"70-(-1))2.]=0.98
No No

For _1(0,2), ul= 1, pl= 1 (Transition noted with 1/1), we have

_(0,2) = exp[(-l'04-1)2.]xexp[. (-0"70-1)5] = 0.02
No No

The rest of _(s', s) can be calculated in the same way.

Step 2: Calculation of c_(s)

We assume that the encoder started at _Xo(0) = 1 and Cro(S) = 0 for all s ;_ 0. All

_(s) can be achieved by recursive calculation based on the previous _(s) and _(s', s).

We show the example for calculating ¢zl(0) and cq(2) here. Since there is no transition

available from state 0 to state 1 and state 3 at time 1 yet, so o0(1)=0 and 00(3)-0. And

a_(O)=crdO)x 7i°(0,0)=1x0.98--0.98

o0(2)= crdO)x 71_(0,2)=1x0.02=0.02

Similarly, all c_.(s) can be computed and are as follows:

i= 0 1 2 3 4

State 3: 0 0 .02 .03 .80

State 2: 0 .02 .07 .83 .11

State 1: 0 0 .00 .11 .06

State O: 1 .98 .91 .03 .03

5 6 7 8 9 10

.12 .03 .33 .18 .63 .02

.03 .77 .18 .36 .02 .33

.79 .12 .36 .32 .33 .63

.06 .08 .13 .14 .02 .02

Step 3: Calculation of l_(s)

The calculation of fli(s) is implemented as backward recursion. The final state of

the encoder is not known. However, there are two methods that can be used for

initialization of fllo(S), fllo(S) is either initialized as OOo(S) or as equal weighting as 1/2 _.

26 i

We use the firstmethod for the initializationand show the example to calculateflffO)

here.

We already know that ,01o(0)= aw(O)=O.02, _1o(2)= O0o(2)=0.33, 7jo°(0,0)=0.18,

yjoJ(0,2)=0.0055, then

l_0)= ,01o(0)_o°(0,0)+_d2) _o_(0,2) = 0.033

Hem we should take care of one more thing. In previous calculation for ?f(s', s),

no normalization for the probability distribution has been done. So, we must do a

normalization to make the sum of the _(s) at any time unit i to bc 1.

After normalization, all _(s) arc listed below:

i-- 0 1 2 3 4 5 6 7 8 9 10

State 3:.23 .17 .10 .07 .26 .44 .23 .01 .34 .63 .02

State 2:.16 .10 .58 .26 .44 .24 .27 .33 .66 .03 .33

State 1:.20 .51 .18 .43 .07 .26 .44 .64 .00 .33 .63

State O: .41 .22 .19 .24 .23 .06 .06 .02 .00 .19 .02

Step 4: Calculation of t_(s', s)

After all the o_(s), fli(s) and _(s', s) have been obtained, oX s', s) can be

calculated. Example of calculatingtr/(O,2), trP(O,O) is shown here,

0 0

a I (0,0)= a o(0)x _,_(0,0)x/_(0)

I I

o"l (0,2) = a o (0) × ;Yl (0,2) × _1 (2)

Step 5: Obtain A (ui).

Then the reliability value of the first information bit is

, cq t (s',s)

A(ul)=ln ,' s = °'It(0'2) =--4.67

]_Y_a,°(s',s) a,°(0,o)
$" $

By using the same method, the reliability values achieved for ten information bits

are [-4.67 -2.2 5.13 -6.15 3.77 -6.15 1.66 -6.0 -7.1 -7.8]. From these

reliability values, we get the complete decoded sequence as

27

[0 0 I 0 0 0 1 0 0 O]

which is identical to the original information sequence.

Though MAP algorithm is the optimal decoding algorithm, it has some obvious

disadvantages. Very large amount of memory is needed for decoding since before fli(s)

can be calculated, all the ¢_(s) at any state and any time must be stored. The calculation

complexity is very high since large amount of multiplications and additions must be

implemented.

We have mentioned that,other than MAP algorithm, SOVA and log-MAP

algorithms can also be implemented. SOVA compares metric values at each node of

trellisto decide which path isthe maximum likelihoodpath,similarto standard Vitcrbi

algorithms.However, for each node, SOVA alsocompares the maximum likelihoodpath

with the second best path to update a reliabilityvalue. This method requires only

comparisons of metrics and table lookups and only needs one pass through the

information,while MAP algorithm requiresboth forward (o_(s))and backward (fli(s))

passes. So itis lesstime consuming than MAP algorithm.Log - MAP algorithm is a

simplificationof the MAP algorithm.Ittakesthe log of the probabilitydistributionof the

transition7f(s',s)and replacesthem by approximations.Log - MAP algorithm isa better

approximation than SOVA and thereisonly a littledegradation in performance of log-

MAP compared toMAP algorithm.

2.2 Performance of turbo codes

For a bit error rate lower than 10-5, the uncodcd binary modulation (BPSK)

requiresthe Eb/No to be largerthan 9.6 dB. Form our simulationresults,we found that

forrateI/3 turbo code, to reach a biterrorrateof I0-5,the Eb/N0 forturbo codes can be

reduced to 0.1dB. The performance improvement of turbo codes can bc as largeas 9.5

dB.

The soft-decisiondecoding performance bounds at differentcode ratesarc given

in Proakis' book, DigitalCommunications[9, Fig. 5.2.14].This plot shows the smallest

EJNo values to achieve the BER of I0-5 with BPSK modulation. At the rateequal to

zero, which means infiniteparitybitsarc added in the transmission together with the

informationbit,the bound isapproximately -1.6 dB, which isequal to the Shannon limit.

28

At the rate equal to 1, which means no parity bits are transmitted and is equivalent to the

uncoded transmission, the bound is given as 9.6 dB and matches the performance for

uncoded transmission. Fig 2.8 shows the bounds.

Rc

o8 f

0.6

0.4

0.2
/

/

/

-2 -1 0 1 2 3 4 5 6

Eb/No (dB)

Fig 2.8 Soft-decoding bounds at different code rates

In our research, performance of high rate turbo codes and the bounds are

compared at BER of 10 -5 . Our simulations are done for rates II2, 213, 314, 415, 5/6,

10/11, 15/16, and 16/17 with the best selection of parameters. A two - encoder parallel

- concatenation system with memory size 4 is implemented. We select the generator

polynomial as 23_31 since it is the best choice and implement a peusdo-random

interleaver with size 256x256. The selection of puncturing patterns is according to the

recent paper "High Rate Turbo Cedes for BPSK/QPSK Channels"[3] and our research.

In Table 2.1, puncturing patterns selected for different code rates are listed. For rates 5/6,

10/11, 15116, modified puncturing patterns are applied to achieve the best performance

(which we will discuss later). MAP algorithm is applied in decoding since it is the

optimal soft decoding algorithm. The number of iterations in the decoding process is set

29

to be 18. In each set of simulations, the total number of informmion bits is 10 7. That is,

the BER value (bit error rate) we can test is down to 10 "_ level.

Fig 2.9 shows the performance after 18 iterations for different code rates. The

Eb/No values where BER of lff 5 can be achieved by different rate codes are also listed in

Table 2.1, and they are compared with the Shannon limit. From the results, we see that

the performance of turbo codes at all these rates is within 0.5 dB from the Shannon Limit.

.i

-!

Table 2.1

Rate 1/2 2/3 3/4 4/5

Puncturing pattems P(1,2) P(3A) P(3,5) P(7,6)

EJNo(dB) 0.75 1.55 2.1 2.5

Distance(dB) 0.45 0.5 0.5 0.5

Performance of high rate turbo codes

5/6 10/11 15/16

modified Modified Modified

2.8 3.7 4.2

0.5 0.45 0.4

16/17

P(2,2)

4.3

0.4

n,-
i11
m

Perlormanceofd_ent rate turoocodesa_er 18 iterations
Io•

10"'

10"z

10"_

i0 "s

lo+
1

I/2
-- 213
4.-----e 3/4

_ _ I0/11

_ 16/17

3 4 5 6
Eb/NO(dS)

Fig 2.9 The performance of turbo codes at different code rates

Fig 2.10 shows the performance of turbo codes compared to some block and

convolutional coding schemes and the performance bounds.

3O

1

0.9

0.8

0.7

0.6
Rat

• 0.5

0.4

0.3

0.2

0.1

0
-2

4b

0 2

O

O

-4-

I+o s,..... ,rot I
@ 4- Turbo codes

O Convolutiomll codes
÷ Block codes

! i i

4 $ 8

Eb,'N0(dB)

10

Fig 2.10 The performance of turbo codes compared to some

convolutional and block turbo codes, also the Shannon limit

In our simulations, we studied the effects of system components and parameters

on the code performance. All possible components or parameters which affect the

performance are listed in Table 2.2. In next section, we will discuss the dominant factor

for turbo code performance.

Table 2.2 Factors for the)erformance of turbo codes

Encoding

System

Structure

Convolutional encoder

Interleaving

Parallel concatenation/Serial concatenation

Levels of concatenation

Memory size (constraint length)

Systematic / nonsystematic

Recursive / non-recursive

Generation polynomial

Nonrandom / random

Algorithm used for random interleaving

Size

Puncturing Code rate

Puncturing pattern

Decoding Algorithm Soft / hard

system iterations

31

p

2.3 Output weight distribution and performance bounds of turbo codes

2.3.1 Output weight distribution

The output weight distribution is the new concern of turbo code researchers. The

relation between the turbo code performance and the output weight distribution has been

studied extensively. At fwst, the performance of turbo codes was claimed to be mainly

decided by the lowest weight code word (which equals to the free distance of the code)

together with the effective multiplicity of these free distance code words [18]. Then new

thoughts came out that the whole output weight spectrum should be considered to

estimate the code performance [25].

Linear recursive systematic codes are used as the component codes of turbo

codes. The minimum output weight of the codes is equal to the free distance of the code.

For punctured high rate turbo codes, the minimum output weight decreases, but it should

be proportional to the free distance of the codewords that are generated by the component

RSCC. Since better error detection and correction capability can be expected when the

free distance of the codewords is larger, minimum output weight can be seen as the

dominant factor of the code performance.

Low weight output sequence is always generated by the low weight input

sequence. The output sequence is made up of the input information sequence and the

generated parity sequence. So when the information sequence itself has high weight, the

output sequence will definitely have high weight too. Also, high weight information

sequence has very little chance to generate low weight parity sequence.

We know that interleaver in the encoding system makes the possibility of all

encoders to generate low weight output simultaneously to be very low. We can prove that

higher the weight of the input sequence, the lower the possibility will be. For the case of

using perfect random interleaver with size L =An, we assume a weight-w information

sequence. The information sequence has a nonzero-bit distribution which causes the low

weight output from the first RSCC. The probability for the interleaved information

sequence, as the input to the second RSCC, to also have the nonzero-bit distribution to

cause low weight output can be approximately represented by

2×(w-l)!
P=

LW-i (2.26)

.i

I

32 i

This probability is achieved approximately when we assume that the interleaver size is

large enough so that the block edge effects are negligible.

For example, assume an input sequence [1 0 0 1 0 0 0 0....] with weight 2, which

can cause the low weight output in the first RSCC. After interleaving, the probability for

the interleaved sequence to also have 2 zeros between its two nonzero bits will be

roughly 2/7.,. Now we explain how this 2/L is calculated. Interleaver is used to change the

permutation of the bits in the information sequence. For the weight 2 information

sequence, after the location for the first nonzero bit has been decided, there are L-1

locations left where the second nonzero bit can stay. Among these L-1 locations, two

locations, which are 3 bits ahead of the first nonzero bit and 3 bits after the nonzero bit,

cause low weight output. So the probability of low weight output is 2/(L -1). It

approximately equals to 2/L when L is a large value. Similarly, if assume a weight 3 input

sequence, the probability for the interleaved sequence to cause low weight output is

approximately 4/L 2.

From equation (2.26), we can see that the probability of a weight w+l input

sequence to cause low weight output is only about 1/L of the weight w sequence. Thus

we can draw the conclusion that the free distance code word is most possibly to be

generated by the minimum weight information sequence. Some researchers assume that

the weight 2 information sequence is the dominator of the performance of turbo codes

because weight 2 is the smallest weight to cause low weight output (weight 1 input

sequence will never cause a low weight output). We have suspicion on this assumption.

In a practical consideration, for an information sequence with length L, it is appropriate to

assume each bit in the sequence to have half probability to be 0 and half probability to be

1. So the probability for the weight 2 input sequence to happen, especially when L is a

large number, should be extremely small. We feel the proper assumption is just that the

minimum weight input sequence generates the minimum output weight sequence.

Also with our above assumption for the practical consideration, we can expect the

weight distribution of the information sequence to show an approximate Gaussian

distribution. And we can expect the output weight distribution spectrum to also have a

similar shape. That means large percentage of the information sequences have about

middle weight and only a small proportion of information sequences are the low weight

33

or high weight sequences. So although the low weight information sequences will have

comparatively much larger influence on the code performance, their multiplicity is much

lower than the middle-weight Information sequence. So, for an accurate evaluation of the

code performance, considering only the influence of low weight outputs is not sufficient.

That is why the output weight distribution spectrum should be taken into consideration

for a better estimation of the code performance.

To achieve an improvement in the turbo code performance, we want the minimum

output weight to be higher and the multiplicity of the low weight codewords to be

smaller. This aim can only be achieved when the variance of the distribution spectrum is

decreased. It follows that when we try to improve the turbo code performance, all we

need to do is try to decrease the variance of the output weight distribution.

-!

2.3.2 Performance bounds

Since turbo codes are generated by the parallel concatenation of two or more

recursive systematic convolutional encoders, we can achieve the performance bounds of

turbo codes from the analysis of the systematic convolutional codes bounds. For a block

of information bits with length equal to L, we know there are totally 2 t" possibilities of the

code words. By the theory that the sum of the probabilities of individual events is no less

than the probability of the union of the events, we can state that Pb, the error probability

of the convolutional codes, should be no greater than the sum of the error probabilities of

each of the 2 t" possible code words.

2 t-

Pb < _ Pc, (2.27)
i=l

where Pc represents the error probability of each of the possible code words.

Assume that the signal energy per information bit is Et,, then the received signal

energy per code word (information + parity) bit is REb. R here represents the code rate. If

BPSK modulation is used, it follows that '+1' and '-1' are transmitted. Also assume an

additive white Gaussian noise (AWGN) channel. We have the Gaussian noise added with

mean at + _ and variance equal to Nd'2. It is well known that the error probability of

each code word is given by

34

In which,

Pc: error propability of each one of the 2z possible code words

Es: signal energy per code word bit

En: average energy of Gaussian noise

weight of the information bits of a certain code word

d: Hamming weight of the codewords

EjNo: signal to noise ratio

R: code rate, the ratio of the number of information bits to the codeword length

L: The size of the block of information bits, or information sequence length.

Q(x): an Gaussian cumulative distribution function. Q-function is defined as the

integral of zero mean, unit variance Gaussian density function from certain point

x to infinite. Hem, Q-function shows the probability of error happening when the

total Hamming weight of a code word is d.

Combining equations (2.27) and (2.28), BER performance of a finite length

convolutional code with maximum-likelihood decoding (MLD) on an AWGN channel

can be upper bounded by using the union bound

2 L

i=-i,-. V _'o)"
(2.29)

To make the calculation of the bounds more convenient, we make a small

modification to collect the codewords of the same d.

pb< _ Na_a I 2REb (2.30)

Here, we have

d/,_,: The minimum Hamming weight of all possible codewords, free distance

d,,_: The maximum of the Hamming weights of all codewords which is equal to

DR.

35

o" .

_a : The average weight of the information bits when the Hamming weight of the

codeword is d.

Na: The multiplicity of code words with Hamming weight d.

An effective multiplicity of code words with weight d can be defined as N,'L.

This procedure of deriving the upper union bound of the performance of

convolutional codes can also be used to derive the bound of turbo codes. We know the

lowest weight output, which decides the free distance of the code, can be regarded as the

dominant factor for the code performance, so further simplification can be applied. We

get a performance bound of turbo codes based on the free distance of the code and the

multiplicity of all the free distance code words.

Nat,,,_ at,., _ 2RE b

Vb < Q(_d_,) (2.31)L N O

We have mentioned that some researchers assume that the free distance code

words are formed by the weight 2 input sequence. In this case the bound is simplified as

N 2 .2 /

Pb <'"_Q(_dI,_, 2REbNo) (2.32)

in which N2 represents the multiplicity of free distance code words caused by weight 2

information bits. But from our analysis above, we prefer to say that the free distance

codewords are generated from the lowest weight input sequence, but not necessarily to be

2.

From our knowledge of the Gaussian density distribution function, equation

(2.32) implies that smaller Hamming weight d causes larger value of the Q function and

in turn, larger error probability. That is, smaller the free distance of the codes, the worse

the performance.

2.4 Relation between the system parameters and output weight distribution

There are tight relationships between the output weight distribution and the

generator polynomials, interleaver and puncturing patterns. Based on these relations, we

can find the criterion to select the best parameters that can help to decrease the variance

36

of the output weight distribution spectrum, and thus to improve the performance of the

turbo codes. In our work, extensive simulations have been done to search for the best

parameters and help to prove our selection criterion. In these simulations, we

implemented a two encoders parallel concatenation system with memory size 4. MAP

decoding algorithm is applied with 18 iterations. In each group of simulations, the total

number of information bits simulated is 107 .

2.4.1 Generator polynomial

Our first consideration is the component code generated by the convolutional

encoder. Based on our formal analysis, the low weight code words are mainly formed by

the low weight information sequence. So our main concern is on the low weight

information sequence.

The implementation of RSCC (Recursive Systematic Convolutional Encoder) is

important. NSCC (non-recursive systematic convolutional encoder) maps a finite weight

input sequence into a finite weight output sequence. The output weight of the NSCC is

correlated with its input weight and can not satisfy the requirement of random-like codes.

The improvement of RSCC is obtained because a finite weight input sequence can be

mapped into an infinite weight output sequence. The output weight of RSCC has the

same distribution as that of a random code sequence. RSCC gives the greatest gain when

used as parallel concatenated codes.

If NSCC is used, the output weight of the low weight information sequence will

always be low. RSCC provides significant improvement in the output weight of parity

sequence. The generation of most of the low- weight codewords is avoided by the use of

RSCC because of the contribution of the feedback structure of the encoder. This structure

makes the previously encoded information bits feed back continuously to the encoder's

input. However, for small number of low weight information sequences with certain

nonzero bits distribution, low weight output will still be possibly formed even by RSCC.

An example to illustrate this is given below.

We use a weight-2 information sequence for the example. Assume that we have a

RSCC with memory size M = 2 as shown in Fig 2.11 The feed-forward and feedback

polynomials of the RSCC are 1+/f and I+D +D 2 respectively. The weight 2 information

37

sequence is assumed to be [1 0 0 1 0 0 0 0 0 0...] and can be described as 1+ D 3. The

low weight output parity sequence [1 1 I 1 0 0 0 0 0] is formed by our encoder. When

the first nonzero bit of the information sequence comes, the trellis path of the

convolutional codes diverges from the all zero state. Later, when the second nonzero bit

inputs to the encoder, it happens to drive the encoder back to the all zero state. After that,

all the remaining bits in the information sequence are zeros. None of them can lead the

encoder away from the all zero state again. So, other than the first four l's, all other

parity bits are zeros. The weight of the parity bits thus is only 4. As a comparison, we

assume another weight 2 sequence, such as [1 0 0 0 1 0 0 0 0 0....], or described as I+

D _. This time the second nonzero bit in the information sequence does not drive the

encoder back to the all zero state, thus the subsequent zero input and the feedback of the

encoder force the encoder to go through a loop of several different states. The parity bits

formed by this sequence will be [1 1 1 0 1 0 1 1 0 1 1 0 1...], a high weight output

sequence.

ui

Pi

Fig 2.11 An example of turbo encoder with M=2 and feedback polynomial I +D +D 2

These two examples show that weight-2 information sequences can possibly

generate low weight output or high weight output sequences. The difference between two

input sequences is the distribution of the nonzero information bits. For the encoder used

in the example and any weight-2 input sequences, there are several possibilities of the

nonzero bits distribution that can cause low weight output. The first case is the sequence

which can be described as 1+ D _z, where z is a small integer larger than 1. All these 1+

/:/z input sequences can be divided by the feed back polynomial I+D +D 2, so the second

nonzero bit of the information sequence drives the encoder back to the all zero state as

was the case for 1+ D J sequence. Since when z increases from 1, the weight of the parity

bits becomes a little higher than the z = I case, we should note that z can only be a very

38

small integer. Otherwise, even though the second nonzero bit finally drives the encoder

back to all zero state, the output weight of the parity bits has been large enough before

that. Some delayed version of the 1+ D 3z sequences can also give the low weight output.

These group of sequences can be described as 1_'(1+ 13_z) where z' is also a small integer

greater than I. For example, a delayed version of our input sequence in the first example

[1 0 01 0 0 0 0 0...] is [0 0 01 0 01 0 0 0 0], which will also cause low weight parity

bits. Other than the first and second cases, low weight output can be generated when the

first nonzero information bit appears at the very end of the input sequence. In this case,

although the second nonzero bit is not 3z bits away from the first nonzero bit, low weight

output will be generated. For all weight 2 information sequences, other than these three

cases, the output sequence will actually have infinite output weight if no termination is

executed at the end to make the parity sequence have the same length as the information

sequence. Even with the termination, the weight of the output sequence will still be high.

Input sequence can have an even lower weight than 2, the weight 1 case. Though

weight 1 information sequence will definitely cause very low output weight for an NSCC,

it will not be the case for RSCC. The code word generated by the weight 1 information

sequence will be of infinite length without temfination. This is due to the fact that after

the only nonzero information bit causes the trellis path to diverge from the all zero state,

there will never be another nonzero bit in the information sequence to remerge the path

back to the all zero state. Thus for weight 1 input, the only possibility to form low weight

output is that the 1 appears at the very end of the sequence. Now let us see what happens

to a low weight information sequence that has a weight larger than 2, but still a small

value (low weight is the main concern for the performance). Similar to weight 2 case,

some of the nonzero bit distributions cause the low weight output while others cause

infinite output weight when no termination is done. If a low weight information sequence

is made up of several weight 2 sequences that cause low weight output, the information

sequence will cause low weight output too. For the encoder in Fig 2.11, we found that

some sequences which can be described as ._r_,_.z.DZ'tl+ D3Z), cause low weight output

when z is small and there are not too many components to be summed up. For example,

low weight parity sequence is generated from weight 4 information sequence [1 0 O1 0...

0100100].

39

Encoders with primitive feedback polynomials are the best choices because they

help to achieve large free distance of the codes. Assume we have the generator matrix of

the RSCC encoder as follows

(2.2)

where gl(D) and go(D) are referred to as the feed-forward and feedback polynomials

respectively. Again, weight 2 information sequence will be considered here to simplify

our analysis. What we want to maximize is the weight of the parity bits, that is

p(D) = d(D) gl (D)
go (D) (2.33)

Here we name u(D) as the information sequence and p(D) as the parity sequence. For the

weight 2 input case, we assume an u(D) = 1+ 19". The e is a finite value selected to be the

smallest to make this information sequence to generate low weight output (free distance

code word). Then p(D) can be written as

p(D)=(I+D') gt(D----!)=g'(D----!)+D" g,(D)

go (D) go (D) go (D) (2.34)

Since the nonzero partof p(D) isalsoof finitelengthe,g1(D) /go(D) must be periodic

with periode.On average,halfof the bitsinthe e long nonzero subsequence ofp(D) will

be 1 and counted for output weight. Approximately, we can predict larger value e will

mean higher weight for the parity bits. This period e, for a strictly proper rational

function of two polynomials such as gl(D) /go(D), is a value no larger than 2 u -1, where

M is the number of memories used in the encoder, e reaches the maximum when the

feedback polynomial go(D) is primitive. On average, primitive polynomial results in

larger free distance in turbo codes.

In our simulations, we set the memory size of the recursive encoder to be 4. Thus

we can expect the maximum period e to reach 15 when the feedback polynomial is

primitive. For the case M"4, there exist two primitive polynomials, 1 + D +D '_ and 1 +

D 3 + D 4. Written in the octal number, they are 23 and 31. For the feed-forward

polynomial, the criterion to select the best has not been found yet. However, since there

are only 2 possibilities of the feedback polynomial and only 8 choices (21,23, 25, 27, 31,

33, 35, 37) for feed-forward polynomial, all the possible combinations are 16. It is not too

40

large a number, so it's possible to find the best combination from simulations. Our

simulations show that, among all the combinations, (23,31) generator polynomial gave

the best performance. We take this combination to be the optimal choice of the generator

polynomial when the memory size is 4. However, our simulations showed that the

performance of the turbo codes is not significantly different with different generator

polynomials. Fig 2.12 shows the encoder with the (23, 31) generator polynomial. Fig 2.13

gives the results for one group of comparisons between the (23, 31) and (31, 27) codes.

0

U

Fig 2.12 Recursive encoder with generator polynomial (23,31)

For the d_erc nt code (23.3 !) and 0 1.27) with rm233 P 0.4)
I0 °

10 "t -- "--- 3-

10 "z

mg_10"_ t

m 10 4

I0 "s ('23,31),P{3.4)It k

i OI.27).P(3,4)st kmtion 8 _5

(23.31).P0,4)It kmtion 12 -_
10 .6 _ OI.27).P(3.4)zI Iteration 12

(23.31),P0,4)it Iteration 16

i0 "_ _ OI.27).P(3.4)mt Itcmtmn 16
0.6 O.g ! 1.2 1.4 1.6 i.g 2

Eb / NO (dn)

Fig 2.13 Comparison of the (23, 31) and (31, 27) generator polynomials

2.4.2 Interleaver

Interleaver is regarded as the most important component in turbo encoding

system. We examine the influence of the interleaver size and the interleaver algorithm on

the output weight distribution.

41

In a two encoders parallel concatenation system, the interleaver is used in turbo

coding system to change the distribution of the information sequence before it inputs to

the second encoder. So the input sequences to the two encoders in the system are actually

different. If the original input sequence has a very low weight, and its nonzero bit

distribution happens to cause low weight output parity bits in the first encoder, it's very

unlikely that the input sequence to the second encoder, after the interleaving, will still

have a nonzero bits distribution which will cause low weight output.

We want the interleaver to make the probability of low weight output,

simultaneously from both encoders, to be very small. This probability depends on the

algorithm used for the interleaver. Random interleaver is preferred over nonrandom

interleaver since the ability of the random interleaver to break the correlation between the

bits of the information sequence is much better than the ability of the nonrandom

interleaver. It can make the output weight distribution to have a shape similar to the

random codes, which makes the performance get very close to the Shannon limit. Also

we want the interleaver size (equivalent to the length of the information sequence) to be

as large as possible. Larger interleaver size is required by the performance bounds

equations to provide low probability of coding error. And it's easy to determine that the

probability of the simultaneous low weight output from both encoders is inversely

proportional to the interleaver size. The probability can be decreased significantly when

the interleaver size is increased.

The interleaving algorithm and the interleaver size are the two considerations in the

selection of the interleaver. We have mentioned that for the first concern, random

interleaver is preferred than non-random interleaver. Pseudo - random interleaver is

selected in our simulation work since it is most commonly used random interleaver. Our

main concern is how significant is the influence of the interleaver size on the

performance, and what will be the appropriate interleaver size to be used in practical

applications. For the appropriate size, two factors should be considered. First, we know

the bit error rate (BER) decreases with the increase in the size of the interleaver. This

effect is called interleaver gain and demonstrates the necessity of larger interleaver. On

the other hand, increasing the interleaver size causes an obvious slow down of the speed

of the turbo codes, especially the speed of turbo decoding. This is because a certain

42

number of iterations are needed in the decoding process to improve the performance. And

in each iteration, the interleaving and deinterleaving (inverse function of interleaving)

processes must be executed several times. Thus a tradeoff is needed between the better

performance of the turbo cedes and the real time decoding.

In order to observe the code performance with different interleaver sizes, we set

the generator polynomial to be (23, 31) and select the 4/5 code rate to do the simulations.

Puncturing pattern is selected to be P (7, 6), which is claimed by [3] to be an optimum

choice. The interleaver sizes 256x256, 128×128, 64x64, 32x32, 16><16, are compared. To

maintain the number of bits being tested in each case (about 107), the numbers of blocks

selected for each simulation are 150, 600, 2400, 9600, 38400. The simulation results are

shown in Fig 2.14 and Table 2.3.

10o Pedofl'nance of dlllmnt size Ir_edem_ on [23,31] code wtth r.4/5

, _ 64"e4

0,o.iIll
2 2.5 3 3.5 4 4.5 5 5.5 6

E_o'B)

Fig 2.14 The influence of interleaver size on the performance of turbo codes

Table 2.3 Performance of 4/5 turbo codes with different size interleavers

256*256 128"128 64*64 32*32 16"16

Eb/No(10 "_)(dB) 2.5 2.6 2.8 3.4 >6.0

Distance to bound 0.5 0.6 0.8 1.4 >4.0

Coding gain 7.1 7.0 6.8 6.2 <3.6

43

There are several observations from the simulation results. First, with the decrease

of interleaver size, the performance of the 4/5 turbo codes decreases quickly. Table 2.3

shows the EjNo values with different interleaver sizes to reach the BER of 10 5. The

performance is also compared with Shannon limit. The coding gain and the distance from

the bound at rate 4/5 are given in the table. Second, the run time of the program increases

significantly when the interleaver size is increased. The third observation is the so called

floor flaring effect, which is a phenomenon that when the EjNo value increases steadily,

the rate of improvement in performance decreases significantly. This is a serious effect

because large increase of E_Vo can only achieve very little improvement in the

performance of the turbo codes. The error floor effect is found to be caused by the

performance union bound of the turbo codes and happens when the performance is near

the bound. When it happens, the slope of the curve drops and then keeps the same as the

slope of the bound. In our simulation results, no floor flaring effect is found for sizes

256x256 and 128×128. Thus the floor flaring effect happens at lower than 10.6 level for

these two cases. It can not be observed because it is beyond the capability of our

simulation. But for sizes less than 64×64, the floor flaring effect is obvious as a low slope

region of the performance curve. The BER values where the error floor effect appears are

listed in Table 2.4. If 10 .6 is set as a level to decide if the error floor flaring effect is

significant enough to influence the performance of turbo codes, then for the Pseduo-

random interleaver we used, 64×64 is the minimum size which can be accepted.

Table 2.4. Floor flaring effect for different interleaver sizes

Error floor effect

256*256

128"128

64*64

32*32

16"16

<<10 "6

<<10 e

Betweenl0 "7and lif e

Betweenl0 "_and 10"_

Betweenl04 and 10"_

2.4.3 Puncturing pattern

Puncturing is also an important factor to determine the performance of the turbo

codes. The higher the desired code rate, the more parity bits need to be punctured, and the

poorer the performance of the turbo codes. From another view, puncturing causes the

44

decrease of the output weight, which decreases the free distance of the code and degrades

the performance of the codes.

Puncturing pattern is used to decide which parity bits should be punctured and

which should be kept after puncturing. Notation P(cl, c2) is used to indicate the

puncturing pattern of turbo codes. In [3], the author claimed that from their simulation

results, some of the puncturing patterns, such as P(3, 4) for rate 213 and P(7,6) for rate

4/5, are the optimal choice. No theoretical proof was given in the paper. Our opinion is

that the selection of the puncturing pattern has some relation with the interleaver

algorithm. Different interlcavers will have different requirements for the puncturing

pattern. For the pseudo - random interleaver, which is used in [3] and also in our

simulations, we don't think the value of cl or c2 has any significant influence on the code

performance. After the random interleaving, the order of the information bits has been

completely changed. There is no reason to say that keeping the Clth bit in the first parity

sequence and the C2th bit in the second sequence is better than other choices. To prove our

thinking, we did a set of the simulations. Table 2.5 shows the different puncturing

patterns in the simulations. The second column of the table gives the patterns that were

claimed to be optimal by [3] at four different rates. The other two patterns have been

randomly selected for comparisons for each rate and they are listed in the third and fourth

columns of the table. In the fifth column of the table, the Eb/No value selected for each

rate to do the simulations is listed.

Table 2.5 Puncturing patterns selected for different code rates

Code rate Puncturing Pattern Random Puncturing Random Puncturing Eb/No

form [3] Pattern (1) Pattern (2) (dB)

213 P(3,4) P(1,2) P(1,1) 1.6

3,_ P(3,5) P(3,3) P(3,2) 2.1

4/5 P(7,6) P(I,6) P(1,1) 2.5

16/17 P(2,2) P(2,11) P(11,1 I) 4.5

45

,!

, " _ p[3,4]

.,["_ I*--* p[1,21
lo [H, p[1,1]

104

10 4 • . _ _

5 10 15

I,M
CD

10o

I

104

[23. 31] code with ra4/5 at Eb/No- 2.5

a:
uJ

._ _ p[7,6]
!*-* p[1,6]

5 10 15
tteratk3ns

'°o

,o,l " _ [*-* p[3,3]

1°4 *_

10"1 J , _ 8

0 5 10 15
#mlUem

100

10.4

10
0 5

[23, 31] code with r,,16/17 I¢ Eb/No,,4.5

_ P[2,2]
P[2,11]
P[11,11]

10" 0 ' '
0 10 15

Iterations

Fig 2.15 Comparisons of different puncturing patterns for high rates at certain Eb/No

Fig 2.15 shows the simulation results for all the four rates at these Eb/No values.

We compared the performance for the three different selected puncturing patterns at

different iterations. As expected, there's no obvious difference in the performance of the

three different puncturing patterns for all of the rates. The puncturing pattern selected by

[3] can not be distinguished to be the optimal choice.

In our simulations, we happen to find that for some special rates, turbo codes

show very poor performance, and the increase of the interleaver size does not show large

improvement as for other rates. Fig 2.16 shows the case for one of the special rates, rate

5/6. In Fig 2.16, we see BER reaches 10 -5 at Eb/_lo =8.3. This performance is much

worse than other rates and far from what is expected. Other special rates giving poor

performances are 10/11 and 15/16 within our concerned range (rate 1/2 to 16/17). We

find for these special rates, puncturing pattern is no longer showing insignificant effect on

the performance. Next, we give the explanation for the poor performance of these rates,

46
!

and then we offer the modified puncturing patterns we designed, which successfully

improved the performance of these codes to a level as good as all other rates.

10'

10"

1¢

ILl

10"_

10_

t

I 1 I I f I I l

z5 3 3.5 _ cs s _s 6
E_O(dB}

Fig 2.16 The performance of 5/6 code with different interleaver sizes

As we mentioned above the impulse response of single data input shows a

periodic pattern of parity bits at output of the recursive encoder because of the feedback

structure. And since the encoder is linear, an input of two or more data will yield a sum of

shifted versions of periodic patterns and is essentially periodic. Thus a period structure

exists in the output parity sequence of the encoder. When the primitive feedback

polynomial is implemented, this period can reach the maximum. For our M=4 case, that

period is 15. That is to say, in this period, 15 different locations are possible to be

selected as the kept bits. Comparing the influence of this period of 15 on the normal and

special rates, we found that for normal rates, the bits on all the 15 locations have the same

probability to be kept by puncturing. But for the special rate, only the bits on some of the

15 locations are possible to be kept, and the bits on all other locations will never be

selected. To make it more clear, we give an example of the comparison between rate of

2/3 as normal rate and rate of 5/6 as special rate. For rate of 2/3 turbo codes, we keep 1

bit in every 4 parity bits to achieve the desired code rate. Similarly, for rate of 5/6 turbo

codes, we keep 1 bit in every 10 parity bits. Without any essential loss of generality, for

47

.I

2/3 code rate,we choose a puncturing patternwhich keeps the thirdbitin each 4 parity

bits,and for 5/6 code rate,we choose the firstbit in each 10 paritybits.Table 2.6 and

table2.7 below show how many differentlocationsinthe periodof 15 can be selectedfor

these two rates.

Table 2.6 selected bit locations after puncturing for 2/3 rate

3 '_ in each 4 parity bits

Location in period 15

3_ in each 4 parity bits

Location in period 15

3 7 II 15 19 23 27 31

3 7 It 15 4 8 12 l

35 39 43 47 51 55 59 ...

5 9 13 2 6 I0 14 ...

Table 2.7 Selectedbitlocationsafterpuncturing for5/6 rate

1st in each 10 parity bits 1 11 21 31 41 51 61 71

Location in period 15 1 11 6 1 11 6 1 11

1,t in each 10 parity bits 81 91 101 111 121 131 141 ...

Location in period 15 6 1 11 6 1 11 6 ...

From Table 2.6, we see that in the case of 2/3 rate, in the first 4 parity bits, the 3 _

location is picked. In the second 4 parity bits, the 7 th location is picked. Then, the 11th,

15 th locations are picked in the 3 rd and 4 th group of 4 parity bits. Thus, as shown in table

5, we found that all of the 15 locations can be selected with same probability. Then we

look at the special 5/6 rate case in Table 2.7. In the first and second group of 10 parity

bits, the 1st and the 11 th locations are selected. Then in the 3 '_ group,'the 6 th location is

picked. Then in the following groups, we see from the table that the 1st, 11 th, 6 th locations

are selected over and over again. Thus, only a limited number of locations are picked in

this case (This is also true in the other special code cases such as 10/11, 15/16). When the

information sequence has low weight, there is large probability that in the long length of

consecutive periods of 15, the value of the bits on some locations is always the same.

Suppose these bits are all zeros, then after the puncturing, the weight of the output

sequence will be very low because the weight of the retained parity bits is too low. Under

such circumstances, even if the encoder itself doesn't generate the low weight output

48

sequence, the final output weight is very low because of the inappropriate puncturing

pattern. And this is the reason for the poor performance.

The solution of this problem is to modify the puncturing pattern so that more of

different locations can be selected for these rates. Here we show how we designed the

alternative pattern for 5/6 code rate to improve the performance. We have calculated that

if the first bit in each 10 parity bits is retained, only the 1st, 11 th and 6 th locations in the 15

locations can be selected. Similarly, if the second bit in each 10 parity bits is retained, it

picks the 2nd, 12th. and 7th locations. In Table 2.8, P(i) in the first column represents the it/,

bit retained in each 10 parity bits. The second column shows the locations that can be

picked in the period of 15. From this table, it's not difficult to observe that if we select

the] st , 12 th , 23 ra , 34 th , 45 th bit in every 50 parity bits, all the locations are selected and

we can still maintain the code rate to be 5/6. Simulations were performed to examine this

alternative puncturing method. Fig 2.17 shows that with all different interleaver sizes, the

performance of the codes improved significantly. For larger interleaver sizes, the

: improvement is especially significant. The EVqVo value to make BER reach 10 .5 is

decreased from 8.3 dB to 2.8 dB by implementing our modified puncturing pattern.

,°'t
2 3 4 5 6

Eb/N0(dS)
100 . . ,

10 "a

2 3 4 5 6

10o . Et_dB) .

10 "_

2 3 4 5 6

SUng0(dB)

10o . , .

10"i

2 3 4 S

Eb/_cB)
100 . . .

10 "_

2 3 4 5 6

Iz normalspec_l

Fig 2.17 The improvement of the performance with the modified

puncturing pattern at different interleaver sizes

49

Table 2.8 The locations selected by selecting different bits

in each 10 parity bits for 5/6 rate

P(1) 1.11.6

P(2) 2.12,7

P(3) 3,13,8

I)(4) 4,14,9

P(5) 5, 15,lO

For rate 10/11 and 15/16, same method is used to design the new puncturing

patterns. In Fig 2.18, we can see the performance of the three special code rates (5/6,

10/11, 15/16) improved very significantly.

lO'

t I,--, I
, i_--_ ssle I

10"11 r 14'--""_ N 10/11 I

IB--v s Ie¢. I

m

i_---_ NI_Ie I

| ,o"

10 4

'0'2 ,'s 3 as , 4.s s s.s e

Fig 2.18 The improvement of the performance with the modified

puncturing pattern at code rates 5/6, 10/11, 15/16

5o

CHAFFER 3

ITERATIVE BLOCK DECODING

Many efficient algorithms have been found for using channel measurement

information (soft decisions) in the decoding of convolutional codes than in the block

codes, so researchers are concerned with the maximum likelihood decoding of linear

block codes using channel measurement information. This decoding method is

particularly useful to decode the high-rate codes because the complexity will increase

very fast with the increase of the parity bits. To implement maximum likelihood decoding

on linear block codes, it's necessary to construct a trellis for the block code. So in section

3.1, the method to construct trellis from a linear block code will be introduced. The

iterative log-likelihood decoding algorithm is given in section 3.2. The implementation

of this method using trellis is discussed in section 3.3.

3.1 Construction of trellis from block codes

3.1.1 Characteristics of the trellis constructed from block codes

Soft decision, maximum likelihood decoding of any (n, k) linear block code can

be accomplished by using the Viterbi algorithm. If the block code is over GF(2), the

trellis constructed will have these characteristics:

1) The depth of the trellis is n.

2) There are no more than 2 {n-k) states in the trellis.

3) There are 2 k paths through the trellis, each of the 2 k distinct codewords correspond

to a distinct path.

4) Each node in the trellis represents an (n - k) tuple with elements 0 or 1 (the two

elements of GF (2)).

5) Each transition between two states is labeled with the appropriate codeword symbol vk,

the first k symbols represent the k information bits Uk. the following n-k symbols

represent the parity bits.

51

There are also some other properties for special block codes:

l) For the cyclic code, the trellis is periodic.

2) For a productive code, the number of states in the trellis can be much less than

2 (_-k) [5].

3)For the singleparitycheck code, the Viterbialgorithmappliedtothe trellisisthe same

as theWagnar decoding.

''!

3.1.2The method of construction

The generalformulationof the trellisfor linearblock codes uses the systematicH

matrix of the code. Compared to the trellisof the convolutionalcodes, the structureof

trellisformed from block codes isirregular,sj(i)isused here to representthe nodes at

depth i,and the subscript'j'representsthejibstateinthe total2("-k)states,riisused as

the input bit between depth i to depth i+1, and hi is used as the ithcolumn of the H

matrix.Then, the stepsforconstructinga trellisare shown below:

I)The trellisstartsatdepth i=O with theallzero state,named as so(0).

2) At each depth i,the collectionof nodes atdepth (i+1) isobtainedfrom thecollection

of nodes atdepth i,the formula used isshown below:

st (i +]) = s_(i) + ri hi+l (3.1)

3) Nodes and lines that do not end at all zero state at depth n are removed.

Here we give an example of a Hamming code to show how to follow these three

steps to construct the trellis.

Hamming codes are block codes with code rate (2 m -1,2" -1- m), given by

(1.12) and (1.13). For convenience, we choose m= 3 and thus we get a Hamming code

with (7,4) code rate. The minimum distance of the code is 3. It means that we are able to

detect two errors but can correct only 1 error by using this code. Assume we have a

systematic H matrix as below

H= 1 1 1 0 1 (3.2)

10100

We can construct the trellis with the H matrix. The trellis should be from depth 0

to depth 7, and have at most 8 states in each depth from 000 m 111.

52

The initial state at depth 0 is 000 as described in step 1. The input between depth

0 and depth 1 has two possible values, 0 and 1. We can calculate the states at depth 1 by

using equation (3.1). Then we have as follows

when input is 0, so(l) = so(O) + 0_1 = 000 + 0x101 = 000 (3.3)

when input is 1, sa(1) = ss(O) + 1M,1 = 000 + lxlO1 = 101 (3.4)

hl here is the transpose of the first column of H matrix.

Thus at depth 1, we will have two states 000 and 101. Then by the same method,

at depth 2, four states are obtained. Two of them are obtained from the state 000 at depth

1, the other two from the state 101 at depth 1, by different inputs 0 and 1 (Fig 3.1).

The calculations are shown here:

From state 000 at depth 1,

when input is 0, sd2) = so(l) + 0_2 = 000 + Oxlll = 000 (3.5)

when input is 1, s7(2) = so(l) + 1M,2 = 000 + lxlll = 111 (3.6)

From state 101 at depth 1,

when input is 0, s5(2) = ss(1) + 0M,2 = 101 + Oxlll = 101 (3.7)

when input is 1, s2(2) = ss(1) + 1_2 = 101 + lxlll = 010 (3.8)

The same method is applied repeatedly for the depths from 3 to 7. And the

number of states remains no more than 8 at these depths. The completely constructed

trellis is shown in Fig 3.1.

0"10

0"11

1 01

110

111

De_ts,'_l C>q, eot_ _ DoeQte..,4 _ i>el_th6 Dem:stt',7

Fig 3.1 The trellis constructed for a (7,4) Hamming code before expurgation

53

Following step 3, the next step is to remove the nodes and lines that do not end at

000 state at depth n. The trellis after expurgation is shown in Fig 3.2.

1

.!

Stoto
OOO

00t

010

011

100

101

11o

111

Fig 3.2 Expurgated trellis for (7,4) Hamming codes

For cyclic codes, an alternative method can also be used to form the trellis. It is

built by tracing all the possible states of the storage devices for all possible inputs. The

number of trellis states at depth i in the expurgated trellis is 2 k in the range [1, n-k-l],

2 <_-*) in the range [n-k, k], and 2 (_-k) while i are in the range of [k, n]. And the trellis

repeats its pattern in the range [n-k, k].

The steps for building the trellis are as follows:

1) The trellis starts at depth i=O with the all zero state.

2) The polynomials at depth i+1 are then formed from the polynomials at depth i in

accordance with the formula: st(x; i+1) = (xsj(x; i)+ x q ri) modulo g(x)

3) Nodes and lines that do not end at all zero state at depth n are removed.

In polynomial notation, each of the states is represented by a polynomial.

54

J

3.2 Iterative log-likelihood decoding of binary block codes

In this part, to show how the decoding algorithm works, we will introduce the log-

likelihood algebra, the soft in / soft out decoder, the iteration algorithm and some optimal

and sub-optimal algorithms being used.

3.2.1 Log-likellhood algebra

The log-likelihood ratio of a binary random variable u is defined as

L(u) = log P(u = u I)
P(u =u2)

(3.9)

P(u) here denotes the probability of the random variable u. This ratio is denoted as the

soft value. The sign of L(u) is the hard decision, and the magnitude is the reliability (soft)

decision. If the random variable u is conditioned on another random vector, named as y,

then the conditioned log-likelihood ratio can be described as:

L(u I y) = log P(u_ I y)
P(u 2 l y) (3.10)

Note that if the probability P(y) =1, the ratio of that term can be canceled out, the joint

log likelihood L (u, y) is then equal to the conditioned log-likelihood L (u I y), so from

equation (3.10), we have,

L(u Iy) = L(u) + L(y lu) = log P(u_) + log P(y lul)
P(u2) P(ylu2) (3.11)

The "symbol by symbol" MAP (maximum a posterioriprobability)is the optimal

decoding algorithm [4].A trellisof finiteduration can representit.The output of a

"symbol by symbol" MAP decoder is defined as a posteriorilog-likelihoodratiofor

transmitted+I and-I inthe informationsequence:

L (_)= L(u Iy) = log P(u =+II y) (3.12)
P (u =-II y)

Assume the transmission is on an AWGN channel, we will have

1 (y - 1) 2

p(ylu =1)=._0.2 exp(. 20.2 -) (3.13)

p(ylu=-l)= 1 exp(. (Y+ 1)2
2.Vt_'0. 2 2o'2 ') (3.14)

55

Together with equation (3.11), the posteriori log-likelihood ratio of u conditioned on the

matched filter output y is:

L(_) = L(u I y) = log
P(u = +1)

+ log
P(u = -1)

1

= log P(u = +1) .4-_-o. 2 exp(+ log
P(u =-1) 1

4_ a 2 exp(,

P(y I u = +1)

P(ylu =-1)

(y - 1)2
--)

20 .2

(y + 1)2
)

20 .2

= L(u) + log(exp(4y 12U 2)) = L(u) + -_ y = L(u) + L c y

(3.15)

2

L(u) is the priori ratio. L, = _- is called as the reliability of the channel. In our research,

we will assume the channel with a constant Lc (time- invariant).

,.'_

..J

I

3.2.2 Soft-in / soft-out decoder

The log likelihood algebra shows that any decoder can be used which accepts soft

inputs (including a priori values), and delivers soft outputs (made up of three terms, the

soft channel, the priori input, and the extrinsic value). Any linear binary code in

systematic form can be used as the component code and the soft-in/soft-out algorithms

exist for these codes. Fig 3.3 is a soft-in/soft-out decoder.

Input log-likelihoods Output log-likelihoods

L(u) ._[

l Soft-In/Soft-Out
Decoder

"1
L_y L(_)

Fig 3.3 Soft-in / soft-out decoder

In Fig 3.3, L(u) represents a priori values for all the information bits, Icy arc the

channel values for all code bits. L¢ (fi) represents the extrinsic values for all information

bits, and L(fi) is the soft output, a posteriori values for all information bits.

56

The extrinsic information contains the soft output information from all the other

coded bits in the code sequence. The L(u) and Lcy value of the current bit do not

influence it. Note that the extrinsic values are used as a priori values only for information

bits and not for parity bits because codeword probabilities are determined from a priori

probabilities of the information bits only.

For systematic codes, we have three independent estimates for the log-likelihood

ratio. The soft output of the information bit u can be represented by the three additive

terms:

L =L y+ L (u)+ (3.16)

3.2.3 Iterative decoding algorithm

Iterative decoding of systematic convolutional codes has been termed as turbo

coding. However, it can also be used for linear binary systematic block codes.

Feedback for the next iteration

Soft-In/Soft-Out

Decoder

y L()

Fig 3.4 Iterative decoding procedure with soft-in / soft-out decoders

For the first iteration, no a priori value exists, thus we can initialize it to be 0.

After that, the extrinsic values are used as the a priori value of next iteration step as

shown in Fig 3.4.

At first, the L-values are statistically independent but after several iterations,

because they use the same information indirectly over and over again, they will be more

and more correlated. For the final decision after the last iteration, the last extrinsic pieces

of information are combined with the received value as the output.

57

The iterations can be controlled by a stop criterion derived from cross entropy, t

here represents the number of iterations[4].

I 12
T(t)- T e-_p(l-__ui;_)< threshold (3.17)

3.2.4 Optimal and sub-optimal algorithms

As we have mentioned above, the "symbol by symbol" MAP algorithm is the

optimal method. If we use "symbol by symbol" MAP decoding rule for systematic

convolutional codes in feedback form with binary trellis, the formula (3.16) can be

represented as

y_.r: (s'. s) .a,_, (s)
(s'.s)
ui-_+l

L(a,) = L, Yi._ + L(u,) + log _ y:,) (s', s). _,_, (s'). fl, (s)
(s'.s)
Ui-_--i

(3.18)

In which, s and s' represent the indexes at level i-1 and i respectively. We have the

forward recursion

a i (s) = _' Yi (s', s) .ai_l(s') (3.19)
e

$

and the backward recursion

fl i-1 (s') = _, Yi (s', s) .fl i(s') (3.20)
$

The forward and backward recursion are initialized with o_tan(O)=l, and fle,ut(O) =1. The

branch transition probabilities between s' and s are,

1£y_')(s',s) =exp(LcYi,vxi.v)
v=2

(3.21)

The calculation of actual probabilities can be avoided by using the logarithm of

the probabilities and the approximation log(e Lm+e t'2) -max(/.q,L2). This sub-optimal

realization of the "symbol by symbol" MAP rule is called s Log-MAP rule. It has been

proved that the performance of the log-MAP algorithm is close to the optimal "symbol

by symbol" MAP algorithm [4].

58

i

The "soft-in/soft-out " Viterbi Algorithm (SOVA) for systematic convolutional

codes in feedback form with a binary trellis can also be used. The SOVA output in its

approximate version has the format:

Lsova (ui) = Lc Yi.! + L(ui) + L, (ui) (3.22)

In which, L¢ (t2i) is the product of the t2i and the first three terms in the formula,

Mi(stJ))=Mi_l(s)+-_L(ui)u i +-_._,_ Lcyi.vxi. , (3.23)

This method preserves the desired additive structure. Consequently, we subtract the input

values from the soft output of the SOVA and obtain the extrinsic information to be used

in the matrices of the succeeding decoder. The extrinsic term is weekly correlated in this

case. For small memories, the SOVA is about half of the complexity of the Log-MAP

algorithm.

When MAP decoding rule is used for linear binary block codes, the branch

transition probability for systematic block codes with statistically independent

information bits Can be written as

Yi (s', s) = P(s Is') . P(Yi I s', s) = p(x i , Yi)

"P(Yi Ix i). p(u i) .. 1 < i < k (3.24)

P(Yi Ix_) ... k + l < i <n

Also the log likelihood ratio,

L(x i I Yi)

Lc y_ + L(u i) .. 1 < .i < k (3.25)
=1. LcY_ .. k + l <i<n

Thus the soft output of the "symbol by symbol" MAP algorithm for block codes can be

written as

(s'). fl, (s)
(s',s)

L(ui) = Lc Yi "t"L(u i) d- log ,,=+1
y_a,_,(s'l . ,O,(s)

(s's)
ui=--I

If the Log-MAP algorithm is used, the formula can be simplified as

(3.26)

59

L_,,__p (ai)= L_y, + L(u i)+ max(log c_i_l(s')+ log fli(s))- m_Oog a'i_l(s')+ logfli(s))(s;s)
ulw¢-I uiffi-I

(3.27)

3.3 Implementation of the algorithm

Two methods are considered to implement the MAP decoding rule for linear

block codes. One of the methods implements the original code and is closely related to

the "symbol by symbol" MAP algorithm, the other uses dual code. These two algorithms

lead to the same result.

3.3.1 Straightforward implementation

Omitting the terms which are equal for all transitions from time i-1 to time i and

using the preceding definition of L (xi, yi), the branch transition operation used in (3.19)

and (3.20) can be written as exp (L (xi, Yi) x/'2), so (3.16) can be described as

N

]-Iexp(L(x, y_)xj /2)
xGC j=i

L(ffi) = Lc Yi + L(ui) + log "ffi+lj,i
N

_ l"Iexp(L(xj, yi)x_/2)
xeC j=l

ui=-I j_i

(3.28)

This equation separates the codewords in two groups. One with all the codewords

having a "+1" at the itn position, the other with all the codewords having a "-1 "at the kth

position.

This separation can be implemented into trellis by small changes in the

construction principle. In general, i different trellises are constructed to obtain the soft

output L(t2_) for all information bits.

The trellis is built by using all the columns of the H matrix excluding the ith one,

and additionally by storing every path ending at time n at the state S,, =hi.

Se,,a_=O and Se,,,_=hi are two possible ending states. The time steps in the trellis

are named after the corresponding column of the H matrix, thus the i_ time instant will

not appear in the trellis any longer.

60

The paths ending in the zero state Se,,dl represent the codewords with a "+1" at the

is position. The paths ending in the state Se,,_ represent the codewords with a "-1" at the

is position. For the class of cyclic codes the trellises for the different information bits are

obtained by simply shifting the indices.

3.3.2 Dual code implementation

If n - k < k, dual code will have fewer codewords than the original code. So,

under such situation, the use of dual code will result in the reduction of the decoding

complexity. The dual code C' can be presented as a trellis with at most 2 k states.

The forward recursion can be written as: t_ i (s) = _ Ti (s', s) ._i_,(s') (3.29)
$"

The backward recursion: fl_-i (s')= _ _ (s', s).fl_(s') (3.30)
$

The recursions are initialized with _0(0)= 1, and /_n(0)= 1. The branch transition

probabilities between the states s, s' are defined here as,

Ti (s', s) = (tanh(L(xi; Yi) 12)) (1-x'_12 (3.31)

Two methods are used to implement "symbol by symbol" MAP rule using the

dual code. Method 1 builds up the full trellis for the dual codes and implements one

recursion. The soft output for each information bit isforward and one backward

calculated by the formula,

(s'.s)
I

L(ffi)=L,y , +L(u,)+log _t2,_,(s')-]_,(s)- _',_,(s')./_,(s) (3.32)
(s;s) (s's)
xv_--+1 x__--1

Method 2 is to construct the modified trellis for the dual codewords to perform one

forward recursion for each information bit. The soft output can be written as:

L(_ i) = Lc y i + L(u i) + 2ar tanh(_n (S,_ 2) / t_ (S,, m)) (3.33)

Dual code of a cyclic code is still a cyclic code. So the modified trellis for every

information symbol can still be built one from the other by simply shifting the indices.

61

3.3.3 A decoding example by using straight-forward implementation

For convenience, here we still choose the (7, 4) Hamming code and the same

systematic H matrix as in 3.1.2.

[llOlO H= 1 1 1 0 1

1 0 1 0 0

(3.2)

Thus we will have a corresponding G matrix (see in Section 1) as:

[!00010!11 0 0 1 1
G=

0 1 0 1 1

0 0 1 0 1

(3.34)

Assume we have the information bits u= 1, 1, 0, 1, then the codeword is

Ii00010i]1 0 0 1 1

v=u.G=[1 1 0 1]. 0 1 0 1 1 =[1

0 0 1 0 1

1 0 1 0 0 1]

(3.35)

The first four bits in v are information bits, and the last three bits are parity bits.

In BPSK transmission, we actually transmit the signal sequence as [1, 1 -1, 1, -1,

-1,1]. The signals received are simulated using SPW software. In the simulation, in

order to make Lc =/(for the simplification of calculation), we make the variance of the

noise to be 2. The simulated results are y=[1.6 2.7 -1.2 -0.8 -0.6 0.08 1.1].

If the hard decoding is applied directly to these received signals, we will have a

sequence [1 1 0 0 0 1 1]. 2 errors have occurred, one in the fourth information bit and

second in the second parity bit. Though (7, 4) Hamming code can detect two errors, it can

only correct one error, so the normal decoding failed.

Now we will see how our iterative block decoding works step by step, and what it

can do to decrease the error probability.

62

3.3.3.1 Constructing trellis for information bits

From the discussion in section 3.3.1, we know that four trellises should be built,

one for each of the information bit locations. And from each trellis, a soft output L(_ i)

should be obtained.

We build the trellis for the first information bit as an example. The trellis should

be built following these rules:

1) The trellis is built by using all the columns of H matrix except the ith one.

2) There arc two ending states of the trellis, Se.dl represents the codewords with a "+1"

at is position, S,,_ represents the codewords with a "-1" at ith position.

3) The trellises of cyclic codes are obtained by simply shifting the H matrix.

For information bit location1, to build a trellis that satisfies the above rules, we

first build a trellis by shifting to the left each column of the H matrix and the first column

becomes the last column.

"1I:10100!1Hsmm = 1 1 0 1 0

0 1 00. 1

(3.36)

The expurgated trellis constructed (same method as in 3.1.2) is shown in Fig 3.5.

Slat,,,

13OO

OO1

010

011

100

101

110

111

DepmO Depth1 Depth2 Demh3 D_-.pth4 D_om5 D_oth6 De.h7

Fig3.5 Full trellis for first information bit location.

63

I

000

001

0t0

011

IO0

10t

110

111

S
er_rl

Send2

Fig 3.6 The final trellis with two ending states for first information bit location.

This trellis is not the final trellis we want yet. In the decoding system, we only use

the trellis between depth 0 and depth 6. Thus we will have the final trellis with two

ending states as in Fig 3.6.

For information bit location 2, the same method can be applied. First a full trellis

is built by using the shifted matrix H,

E 01o01 lHsmrr2 = 1 0 1 0 0

1 0 0 1 1

Then, the part of trellis between depth 6 and depth 7 is discarded. (Fig 3.7)

(3.37)

ooo

o01

01o

011

10o

101

110

111

s. ee-_lq

$ ¢x"_2

Fig 3.7 The final trellis with two ending states for information bit location 2

64

We see two different structured trellises for information bit location 1 and

information bit location 2. Trellises for information bit location 3 and information bit

location 4 can be constructed from further shifting of H matrix.

3.3.3.2 The decoding system

Fig 3.8 shows the basic decoding system for straightforward implementation.

I..(yLI x_)

keEK

I

I
I
I

I

I
I
I

I

I
I

I
I

I
I

I

I_

kiK

o

000

O01

0tO

011

IO0

10t

110

111 • ir,-:,
I
I

I.(x_;y,O L(no I

J

hrlgon

Fig3.8 The decoding system of (7,4) Hamming code while working on information bit 1

In this system, L(yklxD=l.,cy is the input to the system. L(u_) is added to

information bits but not to the parity bits. All the information and parity bits are stored in

the seven buffers. While the system works for information bit 1, the system calculates the

extrinsic value by using the trellis we have constructed for the bit. And this L, (t2_) can

be feedback to L(u_) as the priori value of the next iteration. At last, the extrinsic value is

added to the L(yI: xl) as the final soft output L(t21).

65

For information bit 2, the system shifts the buffers and changes the corresponding

trellis. Fig 3.9 shows the system while working for information bit 2.

I..(y_Ix¢)

L(u,) o

I
I

I
I

I

I
I
I

I
I
I
I
I

I
I

I

L.

k_K

L(_.,'Yl)

1 i l"l'lYr

i i i i i
I
I

L.(x,;yL) L.(0,,.) I

..I

Fig3.9 The decoding system of the (7,4) Hamming code while working

on information bit 2

,ii[

.!
J

3.3.3.3 Calculation of extrinsic value from the constructed trellis

The calculation of extrinsic value is done by using (3.28). We go through the

trellis for information bit location 1 to show the steps to calculate L, (_). We separate

the calculation in (3.28) for each depth in the trellis. The equation for each depth can be

described as

log a t (s_) = log(a j_ I (s_) exp(-L(x_, yj) / 2) + a___ (s 2) exp(L(xj, yj) / 2)) O'_/)

(3.38)

Between depth j-1 and depth j, the exp(-L(xj, yj)/2) used in the equation is the branch

transition operation being used form state sl to state sl, while input is 0. The exp(L(xj,

66

yj)/'2) used in the equation is the branch transition operation being used form state s2 to

state s_, while input is 1.

Assume L(u)=O before the first iteration. From (3.25) and the simulated received

signals, we can calculate the value of each L (xj, yj) as follows,

L (x_, yD=l.6 L (x2, y2)=2.7 L(x3, ys)=-l.2 L(x_, y4)=-0.8

L (xs, y5)=-0.6 L (x6, y6)=0.08 L(xT, yT)=l.1

(3.39)

Now we start from the beginning of the trellis (Fig 3.6).

Depth 0:

We set an initial condition cro(O)=l.

Depth 1:

From depth 0 to depth 1, the input is L(x2, 5,2)=2.7, so exp (-L(x2, y2)/2)=0.26 and

exp(L(x2,y2)/2)=3.9. There are 2 states at depth 1, and each state has only one previous

state.

For state 0, oil(O)= (:to(O) exp (- L (x2, y2)/2)=0.26;

For state 7, _1(7)= _(0) exp (L (x2, Y2) /2)=3.9;

(3.4O)

Depth 2:

There are four states at depth 2, and each state still has only one previous stage.

Calculating by the same method for depth 1, and have L(x3, y._)=-1.2, we get,

ot2(O)= o0(0) exp (-L (x3,)'3) / 2)=0.26xl.82=0.47;

ot2(1)= o0(7) exp (L (x3, y..O/ 2)=3.9.,,"0.55=2.15;

ot2(6)= o0(0) exp (L (x.3,),3) /2)=0.26.,x'0.55=0.14;

ot2(7)= o0(7) exp (-L (xa,)3) /2)=3.9x1.82=Z10;

Depth 3:

8 states, each state with one previous state, L(x4,)4)=-0.8, we can get,

ot3(O)=O. 47x1.5=O. 71 ot_(1)=2.15 xl.5= 3.23

cr.ff2)=2.15xO.67=l.44 _(3)=0.47.x0.67=0.31

ct3(4)= 7.10x0.67=4. 76 a.ff5)=O. 14x0.67=0.09

(3.41)

67

Depth

¢0(6)=0.14xl.5=0.21

a_(O)=

a,(1)= trgl) exp (-L (x,, y4)/2)+

_(2)= 00(2) ext, (-L (x,,,y,) /2)+

a_(3)= 00(3) exp (-L (x,, y,) /2)+

(4)= 00(4) exp (-L (x, Y4) /2)+

_(5)= 00(5) exp (-L (x4, y,) /2)+

_(6)= 00(6) exp (-L (x¢, y,),,'2)+

(7)= 00(7) exp (-L (x, y,) /2)+

Depth 5:

00(7)= Z l Oxl.5=10. 65

(3.42)

4"

8 states, each state with 2 previous states, L(Xs, Ys) = -0.6, we get,

00(0) exp (-L (.r,¢,Y4) /2)+ atd4) exp (L (x_, Y4) /2)=0. 71xl.35+4. 76x0. 74=4.48

y,t) /2)=3.23x1.35+0.09,,x'O. 74=4.43

Y4) /2)= l.44,,vl.35+O.21.,x'0. 74=2.10

Y4) /2)=0. 31,vl.35+10. 65,,x'O.74=8.30

)'4)/2)=4. 76,vl.35+0. 71x0. 74=6.96

Y4) /2)=0.09x1.35+ 3.23x0. 74=2.51

Y4) /2)=0.21xl.35+1.44._9. 74=1.35

y_) /2)=10.65x1.35+O.31xO. 74=14.61

(3.43)

00(5) exp (L (x4,

00(6) exp (L (x,,

00(7) exp (L (x,t,

00(0) exp (L (x4,

00(1) exp (L (x4,

00(2) exp (L (x4,

00(3) exp (L (x,t,

4 states, each state with 2 previous states, L(x_ y6) = 0.08, we get,

ors(O)= _(0) exp (-L (xs, Y5) /2)+ t_(2) exp (L (xs, y_) /2)=4.48,,x'O.96+2.10xl.04=6.49

00(1)= _(1) exp (-L (xs,)'5) /2)+ _(3) exp (L (xs, Ys) /2)=4. 43.,x'O.96+8.30x1.04=12.89

ct5(4)= _(4) exp (-L (xs, Ys) /2)+ _(6) exp (L (xs, Ys) /2)=6.96,,x'O.96+1.35x1.04=8.08

tzs(5)= _(5) exp (-L (xs, Y5),/2)+ ¢_(7) exp (L (xs, ys) /2)=2.51,,,"0.96+14.61x1.04=17.60

(3.44)

Depth 6:

2 states as ending states of the trellis, each state with 2 previous states, L(xz, Yz) =

1.1, we get,

ct6(O)= ¢t5(0) exp (-L (x_ Y6) /2)+ Ors(l) exp (L (x6, y6) /2)=6.49x0. 57+12.89x1. 73=26.00

_(5)= ¢ts(5) exp (-L (xs y6) /2)+ Ors(4) exp (L (x6, y6) /2)=17.60.,x'O.57+8.08x1.73=24.01

(3.45)

Finally, we obtain the extrinsic value L, (_) =log26.00-log24.01 =0.03.

(3.46)

I
i

68
i

3.3.3.4. Simulation result

We have mentioned above that, without the iterative log-likelihood decoding, 2

bits are in error and the decoding of Hamming codes failed. Using the program of Guo in

which the iterative log-likelihood algorithm is applied, we find that the error in

information bit 4 has been corrected.

69

REFERENCES

1. William E Ryan (wryan@nmsu.edu), "A Turbo Code Tutorial".

2. S.C. Kwatra, Peter Curry, "Investigation of Different Constituent Encoders in a

Turbo-code Scheme for Reduced Decoder Complexity", Technical Report, EECS

Department, The University of Toledo,1998.

3. Omer F. Acikel (oacikei@nmsu.cAU), william E. Ryan (wryan@nmsu.edu), "High Rate

Turbo Codes for BPSK / QPSK Channnels".

4. J. Hagenauer, "Iterative Decoding of Binary Block and Convolutional Codes", IEEE

Trans. on Information Theory, VOL. 42, NO. 2, March, 1996.

5. Jack K. Wolf, "Efficient Maximum Likelihood Decoding of Linear Block Codes

Using a Trellis", IEEE Trans. on Information Theory, Vol. 1T-24, 1978.

6. Herbert Taub, Donald L. Schilling, "Principles of Communication Systems", 2nd

Edition.

7. Simon Haykin, "Digital Communication".

8. Andrew J. Viterbi, Jim K Omura, "Principals of Digital Communication and Coding".

9. John G. Proakis, "Digital Communications".

10. Bernard Sldar," Digital Communications: Fundamentals and Applications".

11. Claude Berrou, "Some Clinical Aspects Of Turbo Codes", International Symposium

on Turbo Codes, Brest-France, 1997.

12. Qinyu Chen, J.Kim, S.C. Kwatra, "Investigation on Higher Rate Turbo-Code",

Internal Report, EECS department, The University of Toledo.

13. Claude Berrou, "Near Optimal Error Correcting Coding and Decoding: Turbo-

Codes", IEEE Trans. On Communications, VOL. 44, NO. 10, Oct., 1996.

14. Rainer Licas, Martin Bossert, Markus Breitbach, "On Iterative Soft-Decision

Decoding of Linear Binary Block Codes and Product Codes", IEEE Journal on

Selected Areas in Communications, VOL. 16, NO. 2, Feb., 1998.

15. Had T. Moorthy, Shu lin, Tadao Kasami, "Soft-Decision Decoding of Binary Linear

Block Codes Based on an Iterative Search Algorithm", IEEE Trans. on Information

Theory, VOL. 43, NO. 3, May, 1997.

7O

16. Yulin Guo, J. Kim and S. C. Kwatra, "Implementation of Iterative 1-Dim Block

Coding", Internal Report, EECS department, The University of Toledo.

17. Claude Bcrrou, A. Glavicux, P. Thitimajshima, "Near Optimal Error Correcting

Coding and Decoding: Turbo-Codes (1)", IEEE 1993.

18. D. Divsalar, S. Dolinar, "Performance Analysis on Turbo Codes", IEEE 1995.

19. C. Wang, "On the Performance of Turbo Codes", proceedings ofIEEE MILCOM '98,

Bosten, MA. Oct, 1998.

20. J. Segher, L.C. Perez, "On Selecting Code Generators for Turbo Codes".

21. S.Benedetto R. Garcllo G. Montorsi, "A Search for Good Convolutional Codes to be

Used in the Construction of Turbo Codes", IEEE Trans. on Communications, VOL.

46, NO. 9, Sept., 1998.

22. G. Battail, "Pseudo-Random Turbo codes", IEEE 1995.

23. J. D. Anderson, V. V. Zyablov, "Interleavcr Design for Turbo Codes", International

Symposium on Turbo Codes, Brest, France, 1997.

24. M. Obcrg, P.H. Siegel, "The Effect of Puncturing in Turbo Encoders", International

Symposium on Turbo Codes, Brest, France, 1997.

25. S. Dolinar, D. Divsalar, "Weight Distribution for Turbo Codes Using Random and

Nonrandom Intedeaver", TDA Prograss Report, 42-122, pp. 56-65, Aug 1995.

26. W.J. Blackert, E.K. Hall, "An Upper Bound on Turbo Code Free Distance", IEEE

1996.

27. M. Oberg, P.H. Siegel, "Lowering the Error Floor Flaring for Turbo Codes",

International Symposium on Turbo Codes, Brest, France, 1997.

71

REPORT DOCUMENTATION PAGE FormApproved
OMB No. 0704-0188

Public reporting bur0en for this collection o1 information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
I gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
: collection of information, including suggestions for reducing this burden, to Washington Headquarlers Services, Directorate for Information Operations and Reports. 1215 Jefferson

Davis Highway, Suite 1204, Arlington, VA 22202-4302. and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave b/ank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

September 1999 - Final Contractor Report

s. FUNDING NUMBERS4. TITLE AND SUBTITLE

Investigation of Near Shannon Limit Coding Schemes

6. AUTHOR(S)

S.C. Kwatra, J. Kim, and Fan Mo

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

The University of Toledo

Department of Electrical Engineering and Computer Science

College of Engineering

Toledo, Ohio 43606

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

John H. Glenn Research Center at Lewis Field

Cleveland, Ohio 44135-319t

WU-632-50--5C-00

NAG3-1718

8. PERFORMING ORGANIZATION

REPORT NUMBER

E-11924

10. SPONSORIN_MONITORING
AGENCY REPORT NUMBER

NASA CR--1999-209402

DTVI-59

11. SUPPLEMENTARY NOTES

Pr_ect Manager, R.E. Jones, Communications Technology Division, NASA Glenn Research Center, organization code

5650,(216)433-3457.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Categories: 33 and 61 Distribution: Nonstandard

This publication is available from the NASA Center for AeroSpace Information, (301) 621-0390.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Turbo codes can deliver performance that is very close to the Shannon limit. This report investigates algorithms for convolutional turbo

codes and block turbo codes. Both coding schemes can achieve performance near Shannon limit. The performance of the schemes is

obtained using computer simulations. There are three sections in this report. First section is the introduction. The fundamental

knowledge about coding, block coding and convolutional coding is discussed. In the second section, the basic concepts of convolu-

tional turbo codes are introduced and the performance of turbo codes, especially high rate turbo codes, is provided from the simulation

results. After introducing all the parameters that help turbo codes achieve such a good performance, it is concluded that output weight

distribution should be the main consideration in designing turbo codes. Based on the output weight distribution, the performance

bounds for turbo codes are given. Then, the relationships between the output weight distribution and the factors like generator polyno-

mial, interleaver and puncturing pattern are examined. The criterion for the best selection of system components is provided. The

puncturing pattern algorithm is discussed in detail. Different puncturing patterns are compared for each high rate. For most of the high

rate codes, the puncturing patten does not show any significant effect on the code performance if pseudo - random interleaver is used in

the system. For some special rate codes with poor performance, an alternative puncturing algorithm is designed which restores their

performance close to the Shannon limit. Finally, in section three, for iterative decoding of block codes, the method of building trellis

for block codes, the structure of the iterative decoding system and the calculation of extrinsic values are discussed.

14. SUBJECT TERMS

Coding; Modulation; Communications

15. NUMBER OF PAGES

82
16. PRICE CODE

A05
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified

NSN 7540-01-280-5500 Standard Form 298 (Ray. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

